-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_ground.py
58 lines (49 loc) · 2.17 KB
/
main_ground.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gc
import numpy as np
import keras.backend as K
import argparse
from utils_ground import load_data, load_models, pred_read
from config import hyperparameters
def computeAccuracy(model, parameters, data, labels):
split_num = int(np.ceil(len(data) / parameters.batch_size))
accuracy = 0
for i in range(split_num):
batch_data = data[i * parameters.batch_size:(i + 1) * parameters.batch_size]
prediction_batch = model.predict(batch_data)
accuracy += np.sum(np.argmax(prediction_batch, axis=1) == labels[i * parameters.batch_size:(i + 1) * parameters.batch_size])
return accuracy / len(labels)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataName', default='mnist', type=str, choices=['mnist', 'fashion', 'cifar10'])
return parser.parse_args()
def main():
global _, x_test, y_test
args = get_args()
dataName = args.dataName
if dataName in ['mnist', 'cifar10']:
dataTypes = ['original', 'Gaussian_Noise', 'Shot_Noise', 'Impulse_Noise', 'Defocus_Blur', 'Glass_Blur',
'Zoom_Blur', 'Snow', 'Fog', 'Brightness', 'Contrast', 'Elastic', 'JPEG', 'Pixelate', 'Frost', 'Motion_Blur']
else:
dataTypes = ['original']
for dataType in dataTypes:
if dataType in ["original"]:
severities = [0]
else:
severities = range(1, 6)
for severity in severities:
print("{0}-{1}".format(dataType, severity))
parameters = hyperparameters(dataName, dataType, severity)
x_test, y_test = load_data(parameters)
# save_name = parameters.save_ground_root + "ground-{0}-{1}.npy".format(dataType, severity)
model = load_models(parameters)
pred_read(model, x_test, parameters)
# label_list = label_read(model, x_test, y_test, parameters)
# print(label_list.shape)
K.clear_session()
del model
gc.collect()
# accuracy = computeAcc(parameters, label_list, np.arange(label_list.shape[0]), label_list.shape[0])
# np.save(save_name, accuracy)
# print(accuracy)
if __name__ == '__main__':
main()