-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_laf.py
52 lines (46 loc) · 2.46 KB
/
main_laf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import numpy as np
from config import hyperparameters
from utils_laf import em
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataName', default='java250', type=str, choices=['mnist', 'cifar10', 'fashion', 'amazon', 'iwildcamO', 'java250', 'C++1000'])
parser.add_argument('--dataType', default='ood', type=str)
parser.add_argument('--method', default='new', type=str, choices=['new']) # "new" is laf
parser.add_argument('--ite', default=0, type=int)
return parser.parse_args()
def main():
args = get_args()
dataName = args.dataName
print(dataName)
dataType = args.dataType
if dataType in ["original", "id", "ood"]:
severities = [0]
else:
severities = range(1, 6)
for severity in severities:
parameters = hyperparameters(dataName, dataType, severity)
if args.ite == 0:
saveName = parameters.save_log_root_test + "{0}-{1}-{2}-{3}-{4}.npz".format(args.method, 0, parameters.dataType, parameters.severity, 0)
else:
saveName = parameters.save_log_root_test + "{0}-{1}-{2}-{3}-{4}-{5}.npz".format(args.method, 0, parameters.dataType, parameters.severity, 0, args.ite)
label_list = np.load(parameters.save_ground_root + "labels-{0}-{1}.npy".format(parameters.dataType, parameters.severity))
candidate_index = []
for rowNo in range(len(label_list)):
if len(np.unique(label_list[rowNo, 1:])) > 1:
candidate_index.append(rowNo)
label_list_new = label_list[candidate_index, :].astype(int)
input_file = parameters.save_result_root + '{0}-{1}-glad-filter.txt'.format(dataType, severity)
with open(input_file, 'w') as the_file:
for lineNo in range(len(label_list_new) + 1):
if lineNo == 0:
the_file.write("{0} {1} {2} {3}\n".format(parameters.model_num * len(label_list_new), parameters.model_num, len(label_list_new),
parameters.class_num))
else:
for modelId in range(parameters.model_num):
the_file.write("{0} {1} {2}\n".format(lineNo - 1, modelId, label_list_new[lineNo - 1, modelId + 1]))
glad_accuracy, glad_easyness, glad_label = em(input_file, label_list=label_list_new[:, 1:])
metric_acc = glad_accuracy[:, 1]
np.savez(saveName, x=metric_acc, y=None)
if __name__ == '__main__':
main()