-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_al.py
106 lines (100 loc) · 4.64 KB
/
main_al.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import argparse
import torch
import torch.nn as nn
import gc
import numpy as np
gc.collect()
torch.cuda.empty_cache()
from lenet5 import LeNet5
from utils_svhn import vgg8
import torchattacks
from utils import evaluate_standard, evaluate_adv, get_loaders, selectLoader, save_best, load_best
from config import hyperparameters
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--train', default='standard', type=str, choices=['adv', 'standard'])
parser.add_argument('--dataName', default='svhn', type=str, choices=['mnist', 'svhn', 'fashion'])
parser.add_argument('--metric', default="random", type=str, choices=["random", "bald", "dfal", "entropy", "gini", "entropyDrop", "lc", "margin", "mcp", "egl", "kcenter", "dre"], help="name of acquisition functions")
parser.add_argument('--ite', default=0, type=int, help="The iteration ID of experiments")
return parser.parse_args()
def main():
args = get_args()
dataName = args.dataName
metric = args.metric
ite = args.ite
if dataName == "mnist" or dataName == "fashion":
model = LeNet5().to(device)
learning_rate = 0.001
opt = torch.optim.Adam(model.parameters(), lr=learning_rate)
modelName = "lenet5"
elif dataName == "svhn":
model = vgg8().to(device)
learning_rate = 0.001
opt = torch.optim.Adam(model.parameters(), lr=learning_rate)
modelName = "VGG8"
else:
print("wrong data")
return
parameters = hyperparameters(dataName, modelName)
criterion = nn.CrossEntropyLoss()
train_loader, train_data, _, _, val_loader = get_loaders(parameters.data_dir, parameters.batch_size, dataName)
initial_model = parameters.save_model_root + "initial-{0}.h5".format(ite)
model, opt, _, _, candidate_index, _ = load_best(initial_model, model, opt)
stage_num = int(np.ceil((parameters.budget - parameters.num_initial) / parameters.num_label))
# Training
for stage in range(stage_num):
save_model = parameters.save_model_root + f"al-{args.train}-{args.metric}-{stage}-{args.ite}.pt"
sub_train_loader, candidate_index = selectLoader(train_data, model, parameters.num_label, metric, parameters.batch_size, candidate_index, class_num=parameters.class_num, modelName=modelName, bin_num=50)
best_acc = 0
for epoch in range(parameters.epochs):
model.train()
if args.train == "standard":
for X, y in sub_train_loader:
X, y = X.to(device), y.to(device)
output = model(X)
loss = criterion(output, y)
opt.zero_grad()
loss.backward()
opt.step()
elif args.train == "adv":
atk = torchattacks.PGD(model, eps=parameters.epsilon, alpha=parameters.alpha, steps=parameters.attack_iters, random_start=False)
for X, y in sub_train_loader:
X, y = X.to(device), y.to(device)
adv_data = atk(X, y)
output_adv = model(adv_data)
loss = criterion(output_adv, y)
opt.zero_grad()
loss.backward()
opt.step()
if args.train == "standard":
val_acc = evaluate_standard(val_loader, model)
if val_acc >= best_acc:
checkpoint = {
'state_dict': model.state_dict(),
'optimizer': opt.state_dict(),
'metric_best': val_acc,
'epoch_best': epoch,
'candidate_index': candidate_index,
'current_stage': stage
}
best_acc = val_acc
save_best(checkpoint, save_model)
elif args.train == "adv":
val_attack_acc = evaluate_adv(val_loader, model, "pgd", dataName)
if val_attack_acc >= best_acc:
checkpoint = {
'state_dict': model.state_dict(),
'optimizer': opt.state_dict(),
'metric_best': val_attack_acc,
'epoch_best': epoch,
'candidate_index': candidate_index,
'current_stage': stage
}
best_acc = val_attack_acc
save_best(checkpoint, save_model)
model, opt, _, _, _, _ = load_best(save_model, model, opt)
if __name__ == "__main__":
main()