-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
159 lines (145 loc) · 4.83 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import os
import time
import numpy as np
from autopilot_model import AutopilotModel
from config import SIMULATOR_NAMES, INPUT_SHAPE
from global_log import GlobalLog
from utils.dataset_utils import load_archive_into_dataset
from utils.randomness import set_random_seed
parser = argparse.ArgumentParser()
parser.add_argument("--seed", help="Random seed", type=int, default=-1)
parser.add_argument("--archive-path", help="Archive path", type=str, default="logs")
parser.add_argument(
"--env-name",
help="Simulator name",
type=str,
choices=[*SIMULATOR_NAMES, "mixed"],
required=True,
)
parser.add_argument(
"--archive-names",
nargs="+",
help="Archive name to analyze (with extension, .npz)",
type=str,
required=True,
)
parser.add_argument(
"--model-save-path",
help="Path where model will be saved",
type=str,
default=os.path.join("logs", "models"),
)
parser.add_argument(
"--model-name", help="Model name (without the extension)", type=str, required=True
)
parser.add_argument(
"--predict-throttle",
help="Predict steering and throttle",
action="store_true",
default=False,
)
parser.add_argument(
"--no-preprocess",
help="Do not preprocess data during training",
action="store_true",
default=False,
)
parser.add_argument(
"--no-augment",
help="Do not apply data augmentation during training",
action="store_true",
default=False,
)
parser.add_argument("--test-split", help="Test split", type=float, default=0.2)
parser.add_argument(
"--keep-probability", help="Keep probability (dropout)", type=float, default=0.5
)
parser.add_argument("--learning-rate", help="Learning rate", type=float, default=1e-4)
parser.add_argument("--nb-epoch", help="Number of epochs", type=int, default=200)
parser.add_argument("--batch-size", help="Batch size", type=int, default=128)
parser.add_argument(
"--percentage-data", help="Percentage of data to consider", type=float, default=1.0
)
parser.add_argument(
"--save-with-epoch",
help="Save model files with epoch number",
action="store_true",
default=False,
)
parser.add_argument(
"--model-path", help="Path to agent model with extension", type=str, default=None
)
parser.add_argument(
"--model-name-suffix",
help="Model name suffix to use in the filename (both model and pdf loss)",
type=str,
default=None,
)
parser.add_argument(
"--finetune", help="Finetune existing model", action="store_true", default=False
)
parser.add_argument(
"--early-stopping-patience",
help="Number of epochs of no validation loss improvement used to stop training",
type=int,
default=3,
)
args = parser.parse_args()
if __name__ == "__main__":
logg = GlobalLog("train_model")
start_time = time.perf_counter()
if args.seed == -1:
try:
args.seed = np.random.randint(2**32 - 1)
except ValueError as e:
args.seed = np.random.randint(2**30 - 1)
logg.info("Random seed: {}".format(args.seed))
set_random_seed(seed=args.seed)
train_data, test_data, train_labels, test_labels = load_archive_into_dataset(
archive_path=args.archive_path,
archive_names=args.archive_names,
seed=args.seed,
test_split=args.test_split,
predict_throttle=args.predict_throttle,
percentage_data=args.percentage_data,
finetune=args.finetune,
)
autopilot_model = AutopilotModel(
env_name=args.env_name,
input_shape=INPUT_SHAPE,
predict_throttle=args.predict_throttle,
)
compile_model = False
if args.finetune:
assert args.model_path is not None, "Specify model path when finetuning"
model_path = args.model_path.replace(args.env_name + "-", "")
last_slash_index = model_path.rindex(os.path.sep)
last_dot_index = model_path.rindex(".")
model_path = model_path[last_slash_index + 1 : last_dot_index]
autopilot_model.load(model_path=args.model_path, compile_model=compile_model)
else:
model_path = None
autopilot_model.train_model(
X_train=train_data,
X_val=test_data,
y_train=train_labels,
y_val=test_labels,
save_path=args.model_save_path,
model_name=args.model_name,
save_best_only=True,
keep_probability=args.keep_probability,
learning_rate=args.learning_rate,
nb_epoch=args.nb_epoch,
batch_size=args.batch_size,
early_stopping_patience=args.early_stopping_patience,
save_plots=True,
preprocess=not args.no_preprocess,
augment=not args.no_augment,
save_with_epoch=args.save_with_epoch,
finetune=args.finetune,
model_path=model_path,
model_name_suffix=args.model_name_suffix,
compile_model=not compile_model,
)
logg.info(f"Time elapsed: {time.perf_counter() - start_time:.2f}s")