-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathDistribution_Plotter.ijm
237 lines (217 loc) · 7.74 KB
/
Distribution_Plotter.ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* Distribution_Plotter.ijm
* IJ BAR: https://github.com/tferr/Scripts#scripts
*
* Plots cumulative and relative frequencies from data in the Results table. A Gaussian
* curve (normal distribution) is fitted to the histogram. Requires at least IJ 1.48q.
* Distribution tables can be accessed through the 'List' button of the plot window:
* X0: Bin start, Y0: Relative frequencies; X1: Values, Y1: Cumulative frequencies.
*
* TF, 2009.11 Initial version
* TF, 2014.02 Methods for optimal number of bins, fit to Normal distribution
* TF, 2014.12 Bug fix: Column headings containing spaces were not parsed properly
* TF, 2015.08 Tweaks. Requires BAR_-XX.jar to be installed in IJ's plugins folder
*/
plotSize = 300; // Size (in pixels) of histogram canvas
histScale = 0.77; // Height of modal class relatively to axis of cumulative frequencies
if (nResults==0 || !isOpen("Results")) {
showMessageWithCancel("The Results table is empty. Open sample data?");
call("bar.Utils.loadDemoResults");
}
resCount = nResults;
tabChoices = newArray('Number of values', 'Relative frequency (%)', 'Relative frequency (fractions)');
binChoices = newArray("Square-root", "Sturges", "Scott (IJ's default)", "Freedman-Diaconis", "Specify manually below:");
Dialog.create('Distribution Plotter');
prmtrs = getParameters();
Dialog.addChoice("Parameter:", prmtrs);
Dialog.addChoice('Tabulate:', tabChoices);
Dialog.addRadioButtonGroup("Automatic binning:", binChoices, 3, 2, binChoices[3]);
Dialog.addSlider("Bins:", 2, resCount, sqrt(resCount));
Dialog.addCheckbox("Ignore zeros", false);
Dialog.addMessage(resCount +" data points (NB: 'NaN' values will be ignored)...");
Dialog.addHelp("https://github.com/tferr/Scripts/tree/master/Data_Analysis#distribution-plotter");
Dialog.show;
parameter = Dialog.getChoice;
yAxis = Dialog.getChoice;
autoBin = Dialog.getRadioButton;
userBins = Dialog.getNumber;
if (isNaN(userBins)) userBins = 2;
userBins = maxOf(2, minOf(userBins, resCount));
ignoreZeros = Dialog.getCheckbox;
for (i=0, countInvalid=0; i<resCount; i++) {
value = getResult(parameter, i);
if (isNaN(value)) countInvalid++;
if (ignoreZeros && value==0) countInvalid++;
}
obsCount = resCount-countInvalid;
if (obsCount==0)
exit("No valid data for \""+ parameter +"\" in the Results table");
values = newArray(obsCount);
for (i=0; i<resCount; i++) {
value = getResult(parameter, i);
if (!isNaN(value) && !(ignoreZeros && value==0)) values[i] = value;
}
cumFreq = newArray(obsCount);
if (yAxis==tabChoices[0]) {
cumFreq[0] = 1; plotYmax = obsCount;
} else if (yAxis==tabChoices[1]) {
cumFreq[0] = 100/obsCount; plotYmax = 100;
} else {
cumFreq[0] = 1/obsCount; plotYmax = 1;
}
for (i=1; i<obsCount; i++) {
cumFreq[i] = cumFreq[i-1] + cumFreq[0];
}
Array.sort(values);
Array.getStatistics(values, min, max, mean, stdDev);
// http://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width
if (autoBin==binChoices[0]) { // Square-root
binWidth = (max-min) / sqrt(obsCount);
} else if (autoBin==binChoices[1]) { // Sturges
binWidth = (max-min) / (log(obsCount)/log(2) + 1);
} else if (autoBin==binChoices[2]) { // Scott
binWidth = 3.5 * stdDev * pow(obsCount, -1/3);
} else if (autoBin==binChoices[3]) { // Freedman-Diaconis
binWidth = 2 * (values[(0.75*obsCount)-1]-values[(0.25*obsCount)-1]) * pow(obsCount, -1/3);
} else {// User-defined
binWidth = (max-min)/userBins;
}
if (binWidth==0)
exit("Automatic binning could not be performed.\nRe-check settings or specify bins manually.");
nBins = -floor(-( (max-min)/binWidth ));
bins = getBinStarts(nBins, binWidth, min);
freqs = getHistCounts(bins, values);
Array.getStatistics(freqs, histMin, histMax);
plotXmin = min - binWidth;
plotXmax = max + binWidth;
Plot.create(parameter +" Distribution", parameter, yAxis);
Plot.setFrameSize(plotSize, plotSize);
Plot.setLimits(plotXmin, plotXmax, 0, plotYmax);
drawLabel();
Plot.add("dots", bins, freqs);
Plot.setLineWidth(2);
drawHistogramBars("blue", "cyan");
drawNormalCurve(mean, stdDev, "black");
Plot.setColor("red");
Plot.add("line", values, cumFreq);
Plot.setLineWidth(1);
if (nBins<20) {
drawHistogramLabels("blue"); Plot.show;
} else {
Plot.show; drawRotatedHistogramLabels("blue", 11);
}
function drawHistogramBars(lineColor, fillColor) {
drawingStep = plotYmax/plotSize;
for (i=0; i<bins.length; i++) {
x1 = bins[i]; x2 = x1 + binWidth;
y = plotYmax * histScale * freqs[i] / histMax;
Plot.setColor(fillColor);
for (j=0; j<plotSize*histScale; j++) {
yfill = maxOf(0, y - j*drawingStep);
Plot.drawLine(x1, yfill, x2, yfill);
Plot.drawLine(x1, yfill, x2, yfill);
}
Plot.setColor(lineColor);
Plot.drawLine(x1, y, x2, y);
Plot.drawLine(x1, 0, x1, y);
Plot.drawLine(x2, 0, x2, y);
}
}
function drawHistogramLabels(color) {
Plot.setColor(color);
Plot.setJustification("center");
for (i=0; i<bins.length; i++) {
xpos = (binWidth/2+bins[i]-plotXmin)/(plotXmax-plotXmin);
ypos = 1-(histScale * freqs[i] / histMax);
if (yAxis==tabChoices[0])
label = freqs[i];
else if (yAxis==tabChoices[1])
label = d2s(freqs[i], 1);
else if (yAxis==tabChoices[2])
label = substring(d2s(freqs[i], 2), 1);
Plot.addText(label, xpos, ypos);
}
}
function drawLabel() {
leftMargin = 3/plotSize; topMargin = 15/plotSize;
colWidth = 100/plotSize; rowHeight = 13/plotSize;
row1 = topMargin; col1 = leftMargin;
row2 = row1 + rowHeight; col2 = col1 + colWidth;
row3 = row2 + rowHeight; col3 = col2 + colWidth;
row4 = row3 + rowHeight;
Plot.addText("N: "+ resCount, col1, row1);
Plot.addText("Mean: "+ d2s(mean,2), col1, row2);
Plot.addText("SD: "+ d2s(stdDev,2), col1, row3);
Plot.addText("Min: "+ d2s(min,2), col1, row4);
Plot.addText("Max: "+ d2s(max,2), col2, row1);
Plot.addText("Median: "+ d2s(getMedian(),2), col2, row2);
Plot.addText("Bins: "+ nBins, col2, row3);
Plot.addText("Bin width: "+ d2s(binWidth,2), col2, row4);
if (countInvalid!=0) Plot.addText("Ignored entries: "+ countInvalid, col3, row1);
}
function drawNormalCurve(mu, sigma, color) {
Plot.setColor(color);
lambda = (binWidth * plotYmax);
scale = plotYmax * histScale * lambda / histMax;
drawingStep = (plotXmax-plotXmin)/plotSize;
for (i=0; i<plotSize; i++) {
x = plotXmin + i * drawingStep;
y = scale * ( (1/(sigma*sqrt(2*PI))) * ( exp( -(((x-mu)*(x-mu))/((2*sigma*sigma))) ) ));
Plot.drawLine(x, y, x, y);
}
}
function drawRotatedHistogramLabels(color, fontSize) {
setColor(color);
setFont("SansSerif", fontSize);
xshift = fontSize/4;
for (i=0; i<bins.length; i++) {
xpos = min + binWidth/2 + binWidth*i;
ypos = plotYmax * histScale * freqs[i] / histMax;;
toUnscaled(xpos, ypos);
if (yAxis==tabChoices[0])
label = freqs[i];
else if (yAxis==tabChoices[1])
label = d2s(freqs[i], 1);
else if (yAxis==tabChoices[2])
label = substring(d2s(freqs[i], 2), 1);
Overlay.drawString(label, xshift+xpos, ypos, 90);
}
Overlay.show();
}
function getBinStarts(n, width, startValue) {
bins = newArray(n);
for (i=0; i<n; i++)
bins[i] = i * width + startValue;
return bins;
}
function getHistCounts(binArray, valuesArray) {
counts = newArray(nBins);
for (i=0; i<obsCount; i++) {
value = valuesArray[i];
if (value>binArray[nBins-1])
counts[nBins-1] += 1;
else {
for (j=1; j<nBins; j++)
if (value>=binArray[j-1] && value<binArray[j])
counts[j-1] += 1;
}
}
for (i=0; i<nBins; i++){
if (yAxis==tabChoices[1])
counts[i] = 100 * counts[i] / obsCount ;
else if (yAxis==tabChoices[2])
counts[i] = counts[i] / obsCount;
}
return counts;
}
function getParameters() {
list = split(String.getResultsHeadings, "\t");
if (list[0]==" ") list = Array.slice(list,1); // row numbers
return Array.sort(list);
}
function getMedian() { // values[] is already sorted
if (obsCount%2==0)
median = (values[obsCount/2] + values[obsCount/2 -1])/2;
else
median = values[obsCount/2];
return median;
}