-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeminfhelper.py
executable file
·458 lines (420 loc) · 23 KB
/
deminfhelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
DemInfHelper v0.1.1
Authors:
Thomas Forest ([email protected])
Swan Portalier
Camille Steux
DemInfHelper is a versatile command-line tool for performing population genetics analysis, including the computation of the Site Frequency Spectrum (SFS) and various demographic inference methods. It is designed to facilitate the analysis of genetic data, helping researchers understand the demographic history of populations.
Usage:
1. Install the required modules and dependencies.
2. Run DemInfHelper with various command-line arguments to perform specific tasks.
## Key Features:
- Compute the SFS from a VCF (Variant Call Format) file.
- Transform and normalize the SFS.
- Perform demographic inference using methods like StairwayPlot2, dadi, MSMC2, PSMC, and SMC++.
- Plot demographic inferences and SFS distributions.
- Analyze genotype quality (GQ) distributions.
- Conduct Principal Component Analysis (PCA) on genetic data.
## Command-Line Arguments:
- `--config_file`: Path to the configuration file (optional).
- `--cpus`: Number of CPU threads to use (optional).
- `--sfs`: Compute the SFS from the VCF file.
- `--sfs_transformed`: Normalize and transform the SFS.
- `--plot_sfs`: Plot the SFS.
- `--stairwayplot2`: Run StairwayPlot2 for demographic inference.
- `--plot_stairwayplot2`: Plot StairwayPlot2 results.
- `--dadi`: Run demographic inference using dadi.
- `--plot_dadi`: Create population size plots from dadi output.
- `--msmc2`: Run MSMC2 for demographic inference.
- `--plot_msmc2`: Plot MSMC2 results.
- `--psmc`: Run PSMC for demographic inference.
- `--plot_psmc`: Plot PSMC inference results.
- `--gq_distrib`: Compute the Genotype Quality (GQ) distribution.
- `--smcpp`: Run SMC++ for demographic inference.
- `--plot_smcpp`: Plot SMC++ results.
- `--Gplot`: Plot all inferences on the same graph.
- `--folded`: Fold the SFS (default: True).
- `--pca`: Compute Principal Component Analysis (PCA).
- `--plot_pca`: Plot PCA results.
- `--n_clust_kmeans`: Number of clusters for k-means in PCA.
- Additional configuration parameters.
## Usage:
- Run DemInfHelper with appropriate arguments to perform desired analysis tasks :
python3 DemInfHelper/deminfhelper.py --config_file config.txt --sfs
python3 DemInfHelper/deminfhelper.py --config_file config.txt --pca --n_clust_kmeans 3
python3 DemInfHelper/deminfhelper.py --config_file config.txt --stairwayplot2
python3 DemInfHelper/deminfhelper.py --config_file config.txt --plot_stairwayplot2
## Directory Structure:
- The tool creates directories for output and results.
"""
## IMPORT MODULES
import gzip
import matplotlib.pyplot as plt
import argparse
import numpy as np
import os
## IMPORT CUSTOM FUNCTIONS
if __package__ is None or __package__ == '':
from parsing import *
from inferences import *
from sfs import *
from plots import *
else:
from .parsing import *
from .inferences import *
from .sfs import *
from .plots import *
def parse_args():
## CMD ARGUMENTS
parser = argparse.ArgumentParser(description='Computes the sfs from the vcf and runs demography inference softwares.')
#mandatory arguments
parser.add_argument("--config_file", help="path to the configuration file")
#optional arguments
parser.add_argument("--cpus", help="# CPU threads to use", type=int, default=1)
# mask
parser.add_argument("--mask", help="Keep only regions specified in a given BED file.", type=str)
#SFS
parser.add_argument("--sfs", help = "to compute the sfs", action = "store_true")
parser.add_argument("--sfs_transformed", help = "to normalize the sfs", action = "store_true")
parser.add_argument("--plot_sfs", help = "to plot the sfs", action = "store_true")
#Stairwayplot2
parser.add_argument("--stairwayplot2", help = "to run stairwayplot2", action = "store_true")
parser.add_argument("--plot_stairwayplot2", help = "to run stairwayplot2", action = "store_true")
#Dadi
parser.add_argument("--dadi", help = "to run dadi: the sfs must not be transformed", action = "store_true")
parser.add_argument("--plot_dadi", help = "to create popsize plot from dadi output.", action = "store_true")
#MSMC2
parser.add_argument("--msmc2", help = "to run msmc2", action = "store_true")
parser.add_argument("--plot_msmc2", help = "to plot msmc2", action = "store_true")
parser.add_argument("--msmc2_kwargs", help="Optional args for MSMC2 (list separated by ';', eg. --msmc2_kwarg -i 25; -p 1*2+25*1+1*2+1*3 and so on).", type=str)
#PSMC
parser.add_argument("--psmc", help = "to run PSMC", action = "store_true")
parser.add_argument("--plot_psmc", help = "to plot psmc inference", action = "store_true")
parser.add_argument("--plot_psmc_kwargs", help = "Params to pass to plot_psmc.pl script. Precise them inside quotes (eg. '-x 10**4 -X 150000')", type=str, default="-x 10**4")
parser.add_argument("--psmc_kwargs", help="PSMC params (eg. --psmc_kwarg -p 10+22*2+4+6; -N30 -t15 -r5 and so on)", type=str)
#PL distribution
parser.add_argument("--gq_distrib", help = "to compute the GQ (genotype quality) distribution", action = "store_true")
#SMCPP
parser.add_argument("--smcpp", help = "run smcpp", action = "store_true")
parser.add_argument("--plot_smcpp", help = "to plot smcpp inference", action = "store_true")
parser.add_argument("--Gplot", help = "to plot all inferences on the same graph", action = "store_true")
parser.add_argument("--folded", help = "Fold the SFS. Default: True", action = "store_true", default=True)
# Statistics
# PCA
parser.add_argument("--pca", help = "Compute PCA using Plink2", action = "store_true")
parser.add_argument("--plot_pca", help = "Compute PCA using Plink2", action = "store_true")
parser.add_argument("--n_clust_kmeans", help="Defines the number of k clusters for the k-means on the PCA", type=int)
# Config args; if no config file
parser.add_argument("--popid", help="a population identifier; eg. species name", type=str)
parser.add_argument("--samples", help="a list of samples to use in the VCF. By default all samples are taken.", default="all", type=str)
parser.add_argument("--vcf", help="the vcf file path, only gz format", type=str)
parser.add_argument("--gentime", help="the generation time of the species in years. Eg 1.5", type=float)
parser.add_argument("--mu", help="the average mutation rate per site per generation")
parser.add_argument("--out", help="Output path of the analysis. Will create a dir.", type=str)
parser.add_argument("--out_dir_stats", help="Output path of the stats. Will create a dir.", type=str)
parser.add_argument("--L", help="The actual size of the genotyped sequence length that produced the VCF, before any filters.", type=int)
parser.add_argument("--n", help="Number of sequences that produced the VCF. Eg for 5 dipl individuals, n=10.", type=int)
parser.add_argument("--contig_filter", help="Keep only contigs satisfiying that regular expression.", type=str)
# Parse args
args = parser.parse_args()
if args.sfs:
optional_args = [args.popid, args.vcf, args.out]
else:
optional_args = [args.popid, args.gentime, args.mu, args.out]
if not args.config_file and not all(optional_args):
parser.error("At least one of the optional arguments is missing: popid, samples, vcf, gentime, mu, out, L, n.\nMaybe you forgot to provide a config file?")
# Check if at least one of the required flags is set
if not (args.sfs or args.plot_sfs or args.stairwayplot2 or args.plot_stairwayplot2 or
args.dadi or args.plot_dadi or args.msmc2 or args.plot_msmc2 or
args.psmc or args.plot_psmc or args.gq_distrib or args.smcpp or
args.plot_smcpp or args.Gplot or args.pca or args.plot_pca):
print("Error: At least one of the following options must be specified:")
print("--sfs, --plot_sfs, --stairwayplot2, --plot_stairwayplot2, --dadi, --plot_dadi,")
print("--msmc2, --plot_msmc2, --psmc, --plot_psmc, --gq_distrib, --smcpp,")
print("--plot_smcpp, --Gplot, --pca, --plot_pca")
exit(1)
return args
def main():
# parse args
args = parse_args()
## CONFIG FILE
if args.popid is None:
param = parse_config(args.config_file, args)
else:
program_path = "/".join(os.path.abspath(__file__).split("/")[:-1])+"/"
param = {
'out_dir': args.out,
'vcf': args.vcf,
# for now only use as a single pop.
'name_pop': [args.popid],
'npop': 1,
args.popid: args.samples,
'folded': args.folded,
'gen_time': args.gentime,
'mut_rate': args.mu,
'out_dir_sfs': args.out+'/output_sfs/',
'path_to_sfs': args.out+'/output_sfs/SFS_'+args.popid+'.fs',
'path_to_stairwayplot2': program_path+'/bin/stairway_plot_es/',
'blueprint_template': program_path+'/bin/template.blueprint',
'out_dir_stairwayplot2': args.out+'/output_stairwayplot2/',
'summary_file_stw': args.out+'/output_stairwayplot2/'+args.popid+'/'+args.popid+'.final.summary',
'L': args.L,
# Dadi params
'lower_bound': '1, 1, 0.05, 0.01',
'p0': '0.01, 0.001, 0.01, 0.01',
'upper_bound': '10, 4, 0.1, 10',
'optimizations': '100',
'out_dir_dadi': args.out+'/output_dadi/',
'out_dir_smcpp': args.out+'/output_smcpp/',
'plot_file_smcpp': args.out+'/output_smcpp/'+args.popid+'_inference.csv',
'out_dir_gq_distrib': args.out+'/output_stats/',
'out_dir_stats': args.out+'/output_stats/',
'final_out_dir': args.out+'/inferences/',
# default length of contig to keep, useful for SMC++
'length_cutoff': 100000,
'ref_genome': None,
'n_clust_kmeans': args.n_clust_kmeans,
'cpus': 1,
'contig_filter': args.contig_filter,
'msmc2_kwargs' : args.msmc2_kwargs,
'psmc_kwargs' : args.psmc_kwargs,
'plot_psmc_kwargs' : args.plot_psmc_kwargs,
'mask' : args.mask
}
for p in param["name_pop"]:
if p in list(param.keys()):
param[p] = param[p].split(",")
else:
# if the pop is not defined in the config, the same list
# of all samples from the VCF are used for every pop
param[p] = get_sample_names(vcf=param["vcf"])
param["n_"+p] = len(param[p])
# Add args to the config for hybrid config + parameters set in args
# for arg_name in vars(args):
# arg_value = getattr(args, arg_name)
# if arg_name not in param:
# # config value is kept over args
# param[arg_name] = arg_value
## CREATING DIRECTORIES
if not os.path.exists(param["out_dir"]):
os.makedirs(param["out_dir"])
if args.smcpp or args.stairwayplot2 or args.dadi:
if not os.path.exists(param["final_out_dir"]):
os.makedirs(param["final_out_dir"])
# Compute the SFS
if args.sfs or args.gq_distrib:
res_pars = vcf_line_parsing(PARAM = param, SFS = args.sfs, SMCPP = args.smcpp, GQ = args.gq_distrib, mask=param["mask"])
if not param['L']:
# Needed estimated number of sequence genotyped.
# from GADMA
# Assume total length of sequence that was used for SFS building is equal to Nseq.
# From this data total number of X SNP’s were received.
# But not all of them were used for SFS: some of them (e.g. total number of Y SNP’s) were filtered out.
# Then we should count filtered SNP’s and take L value the following way:
# L = (X - Y) / X * Nseq
param["L"] = res_pars[2]
print("Computed L=", param["L"])
if args.config_file:
# add/update L_computed in the config file
param["L_computed"] = res_pars[2]
print("Adding L_computed=", param["L_computed"], "to", args.config_file)
update_config(config_dict = param,
config_file = args.config_file)
if args.sfs:
if not os.path.exists(param["out_dir_sfs"]):
# create the sfs output directory if it does not exists
os.makedirs(param["out_dir_sfs"])
SFS_dict = res_pars[0]
for p in param["name_pop"]:
# Build coverage plot with current filter
genotyping_coverage_plot(popid = p, snp_coverage = res_pars[3],
out_dir_stats = param["out_dir_stats"],
filter_prefix = None, nb_bins = 10)
if param["folded"]:
# if folded is set to True, store in a string the SFS state
# for later use.
folded_string = "folded"
# Warning! n_bins*2 only for diploids
n_bins = len(SFS_dict[p]) * 2
else:
folded_string = "unfolded"
n_bins = len(SFS_dict[p])
with open(param["out_dir_sfs"]+"SFS_"+p+".fs", 'w') as sfs_out:
sfs_out.write(str(n_bins)+" "+folded_string+" "+'"'+p+'"\n')
sfs_out.write(" ".join(map(str, SFS_dict[p])))
if param["folded"]:
sfs_out.write(" 0"*len(SFS_dict[p])+"\n")
else:
# add the trailing carriage return
sfs_out.write("\n")
# generate the mask for a valid dadi.Fs spectrum
for sfs_bin in range(n_bins):
if sfs_bin == 0:
# Mask the sfs[0] monomorphic sites
sfs_out.write("1 ")
elif (param["folded"] == False and sfs_bin == len(SFS_dict[p])):
# Mask if it the last bin of the SFS and unfolded sfs
sfs_out.write("1 ")
elif param["folded"] == True and sfs_bin > (n_bins / 2)-1:
# Mask all sites that are null in the SFS for folded spectra
sfs_out.write("1 ")
else:
# Part that is not masked
sfs_out.write("0 ")
# trailing carriage return
sfs_out.write("\n")
if args.sfs_transformed:
if args.sfs == False:
SFS_dict = {}
for p in param["name_pop"]:
if "path_to_sfs" not in param.keys():
print("--sfs flag or path_to_sfs missing")
else:
for p in param["name_pop"]:
sfs_list = parse_sfs(param["path_to_sfs"])
SFS_dict[param["name_pop"][0]] = sfs_list
# SFS_dict_trans = {}
# for p in param["name_pop"]:
# SFS_dict_trans[p] = transform_sfs(sfs = SFS_dict[p], n = param["n_"+p], \
# folded = param["folded"])
# with open(param["out_dir_sfs"]+"SFS_"+p+"_transformed.txt", 'w') as sfs_out:
# sfs_out.write(",".join(map(str, SFS_dict_trans[p])))
if args.plot_sfs:
#plot_sfs(sfs = SFS_dict_trans[p], plot_title = "SFS (transformed) "+p, output_file = param["out_dir_sfs"]+p+"_trans.png")
barplot_sfs(sfs = SFS_dict[p], output_file = param["out_dir_sfs"]+"SFS_"+p+"_transformed.png", title = "SFS "+p, transformed = True )
# Run Stairwayplot2
if args.stairwayplot2:
if not os.path.exists(param["out_dir_stairwayplot2"]):
os.makedirs(param["out_dir_stairwayplot2"])
if args.sfs == False:
if "path_to_sfs" not in param.keys():
print("--sfs flag or path_to_sfs missing")
else:
SFS_dict = {}
sfs_list = parse_sfs(param["path_to_sfs"])
SFS_dict[param["name_pop"][0]] = sfs_list
for p in param["name_pop"]:
if param["folded"]:
nseq = len(SFS_dict[p])*2
else:
nseq = len(SFS_dict[p])
input_stairwayplot2(popid = p, nseq = nseq, L= param["L"], whether_folded = param["folded"], \
SFS = SFS_dict[p] , mu = param["mut_rate"], year_per_generation = param["gen_time"], \
stairway_plot_dir = param["path_to_stairwayplot2"], output_path = param["out_dir_stairwayplot2"], \
temp_blueprint = param["blueprint_template"])
run_stairwayplot2(popid = p, out_dir = param["out_dir_stairwayplot2"], path_to_stairwayplot2 = param["path_to_stairwayplot2"])
if args.plot_stairwayplot2:
for p in param["name_pop"]:
plot_stairwayplot2(popid = p, summary_file = "".join([param["out_dir_stairwayplot2"], p, "/", p,".final.summary"]), \
out_dir = param["final_out_dir"])
# Run dadi
if args.dadi:
if not os.path.exists(param["out_dir_dadi"]):
os.makedirs(param["out_dir_dadi"])
if args.sfs == False:
for p in param["name_pop"]:
if "path_to_sfs" not in param.keys():
raise ValueError("--sfs flag or path_to_sfs missing")
for p in param["name_pop"]:
run_dadi_cli(popid = p, out_dir = param["out_dir_dadi"],
sfs_path = param["out_dir_sfs"]+"SFS_"+p+".fs",
p0 = eval(param["p0"]),
lower_bounds = eval(param["lower_bound"]),
upper_bounds = eval(param["upper_bound"]),
optimizations = param["optimizations"])
# Dadi plot
if args.plot_dadi:
for p in param["name_pop"]:
dadi_vals = dadi_output_parse(param["out_dir_dadi"]+p+".InferDM.bestfits")
plot_dadi_output_three_epochs(dadi_vals,p,out_dir = param['final_out_dir'],
mu = eval(param['mut_rate']),
gen_time = eval(param['gen_time']),
L = eval(param['L']))
#GQ distribution
if args.gq_distrib:
if not os.path.exists(param["out_dir_gq_distrib"]):
os.makedirs(param["out_dir_gq_distrib"])
GQ_dict = res_pars[1]
for p in param["name_pop"]:
plot_distrib_gq(popid = p, gq = GQ_dict[p], out_dir_gq = param["out_dir_gq_distrib"] )
# PCA
if args.pca:
if not os.path.exists(param["out_dir_stats"]):
os.makedirs(param["out_dir_stats"])
for p in param["name_pop"]:
pca_from_vcf(popid = p, vcf_file = param["vcf"],
nb_samples = param["n_"+p],
out_dir = param["out_dir_stats"])
##SMC++
if args.smcpp:
contigs = get_contigs_lengths(vcf = param["vcf"], length_cutoff=param["length_cutoff"], contig_regex=param["contig_filter"])
if not os.path.exists(param["out_dir_smcpp"]):
os.makedirs(param["out_dir_smcpp"])
for p in param["name_pop"]:
smcpp(contigs = contigs, popid = p, pop_ind = param[p], vcf = param["vcf"], \
out_dir = param["out_dir_smcpp"], mu = param["mut_rate"],
gen_time = param["gen_time"], num_cpus=param["cpus"], mask=param["mask"])
##MSMC2
if args.msmc2:
contigs = get_contigs_lengths(vcf = param["vcf"], length_cutoff = param["length_cutoff"], contig_regex=param["contig_filter"])
if not os.path.exists(param["out_dir_msmc2"]):
os.makedirs(param["out_dir_msmc2"])
for p in param["name_pop"]:
msmc2(contigs = contigs, popid = p, pop_ind = param[p], vcf = param["vcf"], \
out_dir = param["out_dir_msmc2"], mu = param["mut_rate"], gen_time = param["gen_time"],
kwargs = param["msmc2_kwargs"], num_cpus=param["cpus"], mask=param["mask"])
##PSMC
if args.psmc:
contigs = get_contigs_lengths(vcf = param["vcf"], length_cutoff = param["length_cutoff"], contig_regex=param["contig_filter"])
if not os.path.exists(param["out_dir_psmc"]):
os.makedirs(param["out_dir_psmc"])
for p in param["name_pop"]:
psmc(ref_genome = param["ref_genome"], contigs = contigs, popid = p, pop_ind = param[p], vcf = param["vcf"], \
out_dir = param["out_dir_psmc"], mu = param["mut_rate"], gen_time = param["gen_time"], kwargs = param["psmc_kwargs"])
# Plot SFS
if args.plot_sfs:
SFS_dict = {}
for p in param["name_pop"]:
sfs_list = parse_sfs(param["path_to_sfs"])
SFS_dict[param["name_pop"][0]] = sfs_list
barplot_sfs(sfs = SFS_dict[p], output_file = param["out_dir_sfs"]+"SFS_"+p+".png", title = "SFS "+p, transformed = False )
# Plot PCA
if args.plot_pca:
for p in param["name_pop"]:
plot_pca(plink_eigenvec=param["out_dir_stats"]+"/plink/"+p+".pca.eigenvec",
plink_eigenval=param["out_dir_stats"]+"/plink/"+p+".pca.eigenval",
popid=p, out_dir=param["out_dir_stats"], n_clusters=param["n_clust_kmeans"])
# Plot StairwayPlot2
if args.plot_stairwayplot2 and args.stairwayplot2==False:
if not os.path.exists(param["out_dir_stairwayplot2"]):
os.makedirs(param["out_dir_stairwayplot2"])
for p in param["name_pop"]:
if "".join(["summary_file_stw"]) not in param.keys():
print("path to the population final summary file missing")
else:
plot_stairwayplot2(popid = p, summary_file = param["summary_file_stw"], \
out_dir = param["final_out_dir"])
if args.plot_msmc2:
for p in param["name_pop"]:
plot_msmc2(popid = p, summary_file = "".join([param["out_dir_msmc2"], "/", p, "_msmc2.final.txt"]), \
mu = param["mut_rate"], gen_time = param["gen_time"], out_dir = param["final_out_dir"])
## Plot PSMC
if args.plot_psmc:
for p in param["name_pop"]:
plot_psmc(popid = p, sample_names = param[p],
psmc_output_file = param["out_dir_psmc"]+"/"+p+"_combined.psmc.final",
plot_output_prefix = param["out_dir_psmc"]+"/"+p,
gen_time=param["gen_time"], mut_rate=param["mut_rate"],
out_dir = param["final_out_dir"], kwargs=param["plot_psmc_kwargs"])
# Plot SMC++
if args.plot_smcpp:
for p in param["name_pop"]:
plot_smcpp(popid = p, summary_file = param["plot_file_smcpp"], out_dir = param["final_out_dir"])
##Gplot
if args.Gplot:
for p in param["name_pop"]:
Gplot(T_scaled_gen=param["out_dir_dadi"]+"popt_"+p+"_dadi.txt",gen_time=param["gen_time"],dadi_vals_list=dadi_output_parse(param["out_dir_dadi"]+"output_"+p+".dadi"),out_dir=param["out_dir"], title =p,name_pop=p,popid = p, summary_file2 = param["plot_file_smcpp"],summary_file = param["summary_file_stw"])
if __name__ == "__main__":
main()