@@ -13,7 +13,7 @@ open import Cat.Prelude
13
13
14
14
import Cat.Reasoning
15
15
import Cat.Displayed.Reasoning
16
- import Cat.Displayed.Functor.VerticalReasoning
16
+ import Cat.Displayed.Functor.Vertical.Reasoning
17
17
```
18
18
-->
19
19
@@ -158,8 +158,8 @@ allows us to keep morphisms displayed over the same base.
158
158
```agda
159
159
module _ {L : Vertical-functor ℰ ℱ} {R : Vertical-functor ℱ ℰ} (adj : L ⊣↓ R) where
160
160
private
161
- module L = Cat.Displayed.Functor.VerticalReasoning L
162
- module R = Cat.Displayed.Functor.VerticalReasoning R
161
+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
162
+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
163
163
open _⊣↓_ adj
164
164
```
165
165
-->
@@ -258,8 +258,8 @@ If $L \dashv R$ is a vertical adjunction, then $R$ is a fibred functor.
258
258
→ is-vertical-fibred R
259
259
Vert-right-adjoint-fibred {L = L} {R = R} adj {f = f} f′ cart = R-cart where
260
260
open is-cartesian
261
- module L = Cat.Displayed.Functor.VerticalReasoning L
262
- module R = Cat.Displayed.Functor.VerticalReasoning R
261
+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
262
+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
263
263
```
264
264
265
265
Let $f : \cC(x,y)$ and $f' : \cF(x', y')_ {f}$ be a cartesian morphism.
@@ -333,8 +333,8 @@ Dually, vertical left adjoints are opfibred.
333
333
``` agda
334
334
Vert-left-adjoint-opfibred {L = L} {R = R} adj {f = f} f′ cocart = L-cocart where
335
335
open is-cocartesian
336
- module L = Cat.Displayed.Functor.VerticalReasoning L
337
- module R = Cat.Displayed.Functor.VerticalReasoning R
336
+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
337
+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
338
338
339
339
L-cocart : is-cocartesian ℱ f (L.F₁′ f′)
340
340
L-cocart .universal m h′ =
0 commit comments