-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_pred.py
46 lines (40 loc) · 1.49 KB
/
my_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import motorControl
import test_image
def start():
# Load the model
# model = load_model('keras_model_new.h5')
model = load_model('keras_model1.h5')
test_image.click()
# web_cam.click()
image_path="test_img.jpg"
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = Image.open('test_img.jpg')
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
# print(prediction)
if(prediction[0][0] > 0.5):
print("cardboard")
motorControl.run("cardboard")
elif(prediction[0][1]> 0.5):
print("plastic")
motorControl.run("plastic")
else:
print("metal")
motorControl.run("metal")