-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrackOnCam.py
208 lines (174 loc) · 6.58 KB
/
trackOnCam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
############################################
# Hand Sign classification using two phase on live cam
# By Tirtharaj Sinha
############################################
# to subpress warning
import random
import time
import mediapipe as mp
import tensorflow as tf
import sys
import pickle
import cv2
import pandas as pd
import numpy as np
import seaborn as sn
import matplotlib.pyplot as plt
import os
import warnings
warnings.filterwarnings("ignore")
# The OS module in Python provides functions for interacting with the operating system.
# Matplotlib is a data visualization and graphical plotting library for Python.
# seaborn is alse a data visualization and graphical plotting library for Python.
# used to display markdown,image,control (frontend utilities)
# computer vision library
unique_sign = []
with (open("test_data.pkl", "rb")) as openfile:
try:
test_object = pickle.load(openfile)
except EOFError as e:
print("Error : ", e)
unique_sign = test_object["unique_sign"]
class handDetector:
def __init__(self, staticImageMode=False, maxNumHands=2, minDetectionConfidence=0.5, trackCon=0.5):
self.results = None
self.staticImageMode = staticImageMode
self.maxNumberHands = maxNumHands
self.minDetectionConfidence = minDetectionConfidence
self.trackCon = trackCon
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(
static_image_mode=self.staticImageMode,
max_num_hands=self.maxNumberHands,
min_detection_confidence=self.minDetectionConfidence,
min_tracking_confidence=self.trackCon)
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
# print(results.multi_hand_landmarks)
# for rect in self.results.hand_rects:
# print(rect)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mp_drawing.draw_landmarks(img, handLms,
self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, maxHandNo=1, draw=False):
mainlmlist = []
handsType = []
# handtype=[0,0]
if self.results.multi_handedness:
for hand in self.results.multi_handedness:
# print(hand)
# print(hand.classification)
# print(hand.classification[0])
handType = hand.classification[0].label
# print(handType)
handsType.append(handType)
# print(len(self.results.multi_hand_landmarks[0]))
if self.results.multi_hand_landmarks:
for myHand in self.results.multi_hand_landmarks:
lmList = []
if self.results.multi_hand_landmarks:
for pid, lm in enumerate(myHand.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
# print(id, cx, cy)
lmList.append([pid, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 15,
(255, 0, 255), cv2.FILLED)
mainlmlist.append(lmList)
return mainlmlist, handsType, img
def getBoundedBox(self, lmList):
top, right, bottom, left = sys.maxsize, 0, 0, sys.maxsize
for pts in lmList:
if pts[1] < left:
left = pts[1]
if pts[1] > right:
right = pts[1]
if pts[2] > bottom:
bottom = pts[2]
if pts[2] < top:
top = pts[2]
return top, right, bottom, left
def predictSign(test, model):
# print(test.shape)
y_pred = model.predict(test)
y_pred_labels = [unique_sign[np.argmax(i)] for i in y_pred]
return y_pred_labels
def trackHandCAM(handDetectorModel, frame):
frame = cv2.resize(frame, (400, 400))
clone = handDetectorModel.findHands(frame.copy(), draw=True)
mainlmList, handsType, clone = handDetectorModel.findPosition(
clone, draw=True)
flattenedList = []
# print(clone)
# print(mainlmList)
if len(mainlmList) == 0:
return "empty", []
top, right, bottom, left = handDetectorModel.getBoundedBox(mainlmList[0])
for keypoint in mainlmList[0]:
flattenedList.append(keypoint[1]-left)
flattenedList.append(keypoint[2]-top)
return [handsType[0], flattenedList, clone]
def PredictCAM(frame, model, handDetectorModel):
start_time = time.time()
data = trackHandCAM(handDetectorModel, frame)
if len(data) == 3:
handType, pointslist, clone = data
else:
return np.array([]), None, None
if handType == "Right":
pointslist += [1, 0]
else:
pointslist += [0, 1]
data = np.array(pointslist)
df = pd.DataFrame([data])
pred = predictSign(df, model)[0]
print("Predicted {}".format(pred))
exeTime = time.time()-start_time
print("Execution time :{}ms".format(round(exeTime*100, 2)))
return clone, handType, pred
model = tf.keras.models.load_model('./model.h5')
# setting up webcam
cap = cv2.VideoCapture(0)
# webcam output frame config
cap.set(3, 600) # width of frames
cap.set(4, 600) # height of frames
cap.set(10, 100) # brightness of frames
handDetectorModel = handDetector()
num_frames = 0
refresh = False
pTime = 0
while True:
# rading current frame
success, frame = cap.read()
frame = cv2.flip(frame, 1)
hashand = False
clone, hand, pred = PredictCAM(frame, model, handDetectorModel)
if clone.shape[0] == 0:
frame = cv2.resize(frame, (400, 400))
else:
frame = clone
hashand = True
cTime = time.time()
fps = 1 // (cTime - pTime)
pTime = cTime
frame = cv2.resize(frame, (600, 600))
if hashand:
cv2.putText(frame, hand+" Hand | Predicted : "+pred + " | FPS : " +
str(fps), (10, 550), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (82, 82, 255), 2)
print(hand+" Hand | Predicted : "+pred + " | FPS : "+str(int(fps)))
else:
cv2.putText(frame, "FPS : "+str(fps), (10, 550),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (82, 82, 255), 2)
cv2.imshow("ASL Recognition", frame)
if cv2.waitKey(1) & 0xFF == ord('r'):
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break