diff --git a/Untitled0.ipynb b/Untitled0.ipynb new file mode 100644 index 0000000..035c020 --- /dev/null +++ b/Untitled0.ipynb @@ -0,0 +1,2945 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:74dee07e6f6c481d971a17b2cb48061a75e4e5fe75e3acb45771f1c9537af261" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import xlrd\n", + "import numpy as np\n", + "import seaborn\n", + "import datetime" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data = pd.read_csv(\"cohort_3_python.csv\", skip_footer=4, engine='python')\n" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_class = python_data.set_index('Name')\n", + "lecture = python_class[python_class.columns[[0, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 21, 23]]]" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 4 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "lecture = python_class[python_class.columns[[0, 2, 4, 6, 8, 10, 12, 13, 15, 17, 19, 21, 23]]]\n", + "lecture_averages = lecture[::1].mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 5 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "homework_data = python_class[python_class.columns[[1, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22]]]\n" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Python Lecture Average Difficulty" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "plt.title(\"Mean Difficulty for Lectures Per Day\")\n", + "lecture_averages.plot(color='#6ced50', figsize=(15,7), ylim=(0, 6))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 7, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAGyCAYAAACFlbv5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4XdV59/3v2rJkybY8YXnAGIwZNmBs5slmHkOYwpSE\nEAiBpDTN06ZNm7F92j5t8yZp015N0zZJE0IChJKEAMGBAGEONvNkM23AYMBgQGAbT/Ig7fX+cY6N\nbGyQ7G3tI+n7uS5dOuM+9zlaOtLv3GuvHWKMSJIkSZJUlKTsAiRJkiRJfYtBU5IkSZJUKIOmJEmS\nJKlQBk1JkiRJUqEMmpIkSZKkQhk0JUmSJEmFGlB2AZKk7kvTdCLwAvCHLMuO2OC6S4FPAaOyLFu4\nleu4E9geeKd6UQNwF/DlLMuWpWm6P/CVLMvOTtN0AvA7YA3wBeCbwNDq989nWTZ9C2r4XpZlv07T\n9EfA97Mse6SL902Aa4HdgO9mWfbfm1nDPOCMrj7uB2zrAODCLMs+t6Xb6ubjHknl5/MMEIEAtAP/\nL8uy3xa0XYA6YBnwD1mW3bQFJUuSaphBU5J6r5XALmmabp9l2csAaZoOBg6lEhR6QgT+Ksuya6qP\nPwD4D+BK4NQsyx4Czq7e9ihgQZZlx6VpejgwOsuyXarXXbmFNax9vscCP+jGfbcDjgcGZVm2Ja9Z\nka/3ZCp1leH5LMv2WXsmTdOpwMw0TSdmWfZ2wdu9OU3T07Ise2ALtitJqlEGTUnqvTqAXwDnUukK\nApwBXAf85dobpWl6CvDXVLqNK6gEw/vSNB0D/BAYDYwFXgI+mmVZa7VDdylwDJWO5S+yLPvKJuoI\na09kWdaepukXgdfTNE2BccD3gD8F/hEYlqbp7cAEYHyapo8AnwAeyrJsSDWo/jNwEpVu2izgT6r1\nb5Nl2Z9Wn9Pfdz4PhDRN/wnYFrgiTdOLgd8C22VZtiRN0wBkwJlZls2pbqMZuAmoBx5J0/RMYHz1\n8QcBq4G/ybLs5jRNLwAuql6+OMuyYzb9Y1lfmqYXAZ+jsrvK28D/ybIsS9N0SPW1mVZ9rtcB3wf+\nARiapuklwGXAf2ZZNqW6rSOpdG+nVF+DQ6j87B7Psuz8NE3/msoYSIB5wJ9kWbYgTdMzqq9hTmXc\nfCnLsj98UO1Zls1O03QFsAPw9vts/87qc9sN+O8sy/6rC9v9D+AvgHPSND0Y+DYwkMqY+X2WZZ+p\nPt4eWZadW33+06vPf98Pql2SVC730ZSk3u1y4JOdzp8P/HTtmTRNdwG+AZxY/ef8YuCaNE0HAR8D\nZmZZNi3LsklUQuh51btGYHCWZYdTCUJ/mqbpDpuoYb1uXpZlK4FngSmdLrsT+FsqU32PBj4DzK3W\ntLLTNv4E2BeYCuwJNFfr3LBjGDe4LGZZ9jfAa8C5WZbdDdxGJYRDpZvaujZkVmtaCpwItFW7be8A\nvwL+LMuyvahMP76iOk0ZYA/giG6GzCOo/EwOqz7XfwGuqV79D1TC/27A3sB0YCfg/1Zfp4voFOI3\nYQKwTzVknk/lNTuw+nx+B/y4ert/Bj6XZdkB1e0fsdGtvbf+M6gE06c+YPsRWJhl2eQPCpmdzObd\nMfJnwP/NsuxgKh3dU9M03Qf4H+CkNE2HV293MZUwLkmqcXY0JakXy7LskTRN8zRN9wVageYsy56s\nNBMBOI5Kh+j2Tpd1ADtlWfYfaZoeVu1A7kIlRNzXafO/qT7Ga2mavgmMpNL17IoILN/gsrCJ050d\nC1yWZdmq6vmPA6Rp+nddfNzO/otKwPo+mw4ones4iMoUzwcBsix7Kk3TmcCRVJ7P7CzLlnWzhpOA\nnYFZnV7/EWmajqDSLf6L6pTdNdXHIU3THbux/fuyLMurp08GDgAeqj5WHdBUve4q4Lo0TW8Afk8l\n8G7MTmmaPlo9XQ+8DJyWZdnKNE3fb/sAH9gh3UCk8uEGVEL9SWmafg3YnUrneEi1u/5b4Pw0TS+n\nMs35j7v5OJKkEhg0Jan3W9vVbKUy1bKzBLgty7KPr70gTdPtgflpmn6bSnC4BLidyt+EzsGrrdPp\nyAd319ZufxCVsPAElQ5dd6zZYFstVALNho8/sAvbug0YlKbpMcBhvNut3ZSNzfKpo/K6rKGygE13\nJcDlWZZ9FaA6hXdClmWL0jRt73zDNE3Hs/5rDu993g0bXN85zCfAt7Is+2F1ew3ANgBZlv1NdSru\n8cAFwFfTNN1vI/ulzu28L+VGnstGt1/V3dfnACpdTYB7gEepTGX+JXAg7z7v/6LyIUE7cHWWZSuQ\nJNU8p85KUu93BfBRKlNMN1xU5w7g+Or+kqRp+iHgMaCRSuj49yzLfk4lpB5HJVh117oglKZpE/Dv\nwI1Zlr2yGdu6FfhEmqYN1RVhfwCcU61vv+pjDK7WvjHtVMNYNUT9N5XpnT/Psmz1Bzz2fZXNpwdU\nH2cylYB6J10L2Ru7zS1U9kEcWz3/2eplUHmun0rTNKRpOhD4NXA4lVBbX71NK7B9mqYt1ZD6kfd5\n/JuBz1b3PQX4e+BnaZrWpWn6IpWp0D8EPk/lg4Dufti80e13ur5LH0QApGl6IJXO5Her3d39gK9m\nWXYdlYWQdqY6FrMsu5fKvqV/hdNmJanXsKMpSb1XhHVTW5+iskjN4g2uezJN0z8CrqoGlTXAKVmW\nrUjT9B+A76Rp+nXgTeBqKv/gd9e/pGn6N1TCwAAqUzP/tNP1sdP3uJHLO5/+ITAReJhKcLkD+C4w\nBDgxTdPngFeBmWw82FwH/CJN04uyLLuVSof3X6vb3ZS1r9VbaZqeDXyv2pXNgQuyLHu+ugjNB60s\ne3eapnmn81/KsuwH1c7x76vXvQOcXr3+/1Wf2+NUQtVVWZZdl6bpJOAbaZr+OsuyM9M0/SHwELCA\nygJHm3o9f0xlMaP70jSNVKY5fyrLso40Tf8cuDJN0zXV5/XpLMvW6x53fi02YaPb78J9I+tPyV37\nOpzTaWGmb1JZkOk14CngRipj8Y7qfX4KnJ1l2ZPvU58kqYaEGHtqBXxJknpWmqYfB87LsuyksmvR\n5qmuRHwtlX13f1V2PZKkrqmJjmZ15/9TqEwV+s8sy372AXeRJOl9VQ+50QKcWXIp2kxpmu5BZf/N\nGwyZktS7lN7RrB4T7ItZlp1a3e/my1mWbc7qgpIkSZKkGlALHc3jgTlpml4HDAW+VHI9kiRJkqQt\nUAtBs4XKAadPBiYB11M5eLUkSZIkqReqhaD5FvB0lmXtwLNpmq5M03RUlmVvbezGMcYYQpdXUJck\nSZKkvqbmA1EtBM17gC8A/5am6bbAYODtTd04hEBr69Keqk29XEtLs+NFXeJYUXc4XtRVjhV1h+NF\nXdXS0vzBNypZUnYBWZbdADyapukDVKbN/kn1INuSJEmSpF6oFjqaZFn2lbJrkCRJkiQVo/SOpiRJ\nkiSpbzFoSpIkSZIKZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJUKIOmJEmSJKlQBk1JkiRJUqEMmpIk\nSZKkQhk0JUmSJEmFMmhKkiRJkgpl0JQkSZIkFcqgKUmSJEkqlEFTkiRJklQog6YkSZIkqVAGTUmS\nJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJkiQVyqApSZIkSSqUQVOSJEmSVCiDpiRJ\nkiSpUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIkSZIKZdCUJEmSJBXKoClJkiRJKpRBU5Ik\nSZJUKIOmJEmSJKlQBk1JkiRJUqEMmpIkSZKkQhk0JUmSJEmFMmhKkiRJkgpl0JQkSZIkFcqgKUmS\nJEkqlEFTkiRJklQog6YkSZIkqVAGTUmSJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJ\nkiQVyqApSZIkSSqUQVOSJEmSVCiDpiRJkiSpUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIk\nSZIKZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJUKIOmJEmSJKlQBk1JkiRJUqEMmpIkSZKkQhk0JUmS\nJEmFGlB2AWulafoI8E717AtZll1UZj2SJEmSpM1TE0EzTdNGgCzLjiq7FkmSJEnSlqmJoAnsBQxK\n0/RmKjV9Pcuy+0uuSZIkSZK0GWplH83lwL9kWXYC8MfAz9M0rZXaJEmSJKl0q2jj8fCHssvokhBj\nLLsG0jRtAJIsy1ZWz98PnJFl2asbuXn5BUuSJElSD+iIHTyz5jEeXH0Xs1ffzxpW872R14ay6/og\ntTJ19tPAVODzaZpuCwwFFmzqxq2tS3uqLvVyLS3Njhd1iWNF3eF4UVc5VtQdjhetFYks4EVmh1k8\nGe5jeVgCwMg4hilxesnVdU2tBM1LgEvTNL27ev7TWZblZRYkSZIkST1pMa3MCfcyJ8zkrVDpuzXF\nIRyQH8uUOJ3xTCJQ881MoEaCZpZl7cB5ZdchSZIkST1pJct5KjzA7DCLl0MGQF2sZ4/8QKbE6ezM\nFOpqI7Z1S++rWJIkSZJ6sQ7aeZ7HmZ3M4lkepSO0A7BD3J2pcRq7xwNoZFDJVW4Zg6YkSZIkbWWR\nyHyeZ06YyZPhftrCcgBa4nim5NOYEg9hGKNKrrI4Bk1JkiRJ2kre5nXmhFnMCbNYFN4EYHAcxkH5\nCUyN0xnLDr1mv8vuMGhKkiRJUoFWsJQnw/3MDjN5NcwFoD42VDuX05jEZBLqSq5y6zJoSpIkSdIW\namc1z/IYs5OZPM9s8tBBiIFJcU+mxunsFvejgcayy+wxBk1JkiRJ2gyRnJd4ljlhJk+FB1gV2gAY\nG7dnSj6dPePBNDOi5CrLYdCUJEmSpG5o5VVmh1k8EWbxTngbgKFxJPvlRzM1Tmc025VcYfkMmpIk\nSZL0AZaxmCfCfcwJs1gQ5gHQEBvZOz+MKXE6E9mNQFJukTXEoClJkiRJG7GaVWThYWaHWbzAE8SQ\nE2LCLnEvpsbp7Br3oZ6BZZdZkwyakiRJklSVk/MiTzEnzOSZ8DCrw0oAto2TmJpPY3I8mMEMLbnK\n2mfQlCRJktTvvc7LzA4zeSLcy7KwGIDhcRQH5cczJU5nFONKrrB3MWhKkiRJ6peWsJA54V7mhFm8\nGV4BoDEOYr/8KKbEaUxgVwKh5Cp7J4OmJEmSpH5jFW08HR5idpjJPJ6GEEliHbvF/ZiST2MX9mYA\n9WWX2esZNCVJkiT1aR208wJPMjvMJAuP0B5WAzAh7sLUfDp7xANpYkjJVfYtBk1JkiRJfU4ksoAX\nq8e7vJcVYSkAI+MYpubTmRKnMYLRJVfZdxk0JUmSJPUZi2llTriX2WEmb4cFAAyKzRyQH8vUOJ1t\nmeR+lz3AoClJkiSpV2tjOU+FB5gTZvFyyAAYEOuZnB/ElDiNnZhCndGnR/lqS5IkSep1OmjnOR5n\ndjKT53iMjtAOMTAx7s7UOJ3d4v40MqjsMvstg6YkSZKkXiESmc/zzA4zeSrcT1tYDkBLHM/UfDp7\nxkMYxjYlVykwaEqSJEmqcW/zOnPCLOaEWSwKbwIwJA7j4PxDTI3TGcP27ndZYwyakiRJkmpKTget\nvMZL4RnmhFm8GuYCUB8bmJJPY2qczo5MJiEpuVJtikFTkiRJUmk6aKeVV1kQ5rGAeSwI83iDl2kP\nawAIMTAp7lnd73I/GmgsuWJ1hUFTkiRJUo/ooJ03mc+C8CILeKkaKl+hoxoqAZJYx2jGMy7fkXHs\nSBr3pZnhJVatzWHQlCRJklS4dtbwJq+s16l8k/mV1WGrkljHGCYwLp/IOCYyLk5kNBMYQH2JlasI\nBk1JkiRJW6Sd1byxkVCZh451t6mL9Yxhe8blO1RD5Y6MZjuPb9lH+VOVJEmS1GVrWM0bvFwNlS+y\nILxEK6+uFyoHxPpKmMx3YBw7Mi5OpIXxhsp+xJ+0JEmSpI1azapqqHxxXaeyldeIIV93mwGxgW3Z\ncb3pr6PY1lDZz/nTlyRJksRqVvJ6dYGetaHyLV4jhrjuNvWxge3YqbpQz9pQOY6EuhIrVy0yaEqS\nJEn9zCraWMBLvL4uVL7IW7wOnUJlQ2xkAruu16nchnEeu1JdYtCUJEmS+rCVrGAB83g9vFTdp3Ie\nb4fX17tNQ2xkB9INQuVYgqFSm8mgKUmStsjbLCALjzAlTvdYd1LJ2li+btrr69XvC8Mb691mYBzE\nxLg74+LEdQv1jGS0oVKFMmhKkqTNsphW7g7X8Xi4hxgi98QZHBfPYe94OIFQdnlSn7eCpSzgpcpC\nPWEer/MSi8Kb692mMQ5mxzi5GiorncoRjPZ3VFudQVOSJHXLEhZyT7ieR8Jd5KGDljieNN+XB8Lv\nmZFcwhPxXk7OL2QEo8suVeozVrCU16rTXtcu1vNOeGu92zTFIUyKe1ZCZbVbOZxRhkqVwqApSZK6\nZDlLuCfM4KFwOx1hDSPjGI7IT2dyPJiEhP3i0dyY/JTnwuN8P/k6R8UzOSie4MIhUjctZ8kGofJF\nloSF691mUGxmpziVcXGHdaFyGNsYKlUzDJqSJOl9tbGMWeF3PBBuYU1YxbC4DYfnH2GveOh6hzQY\nxjZ8PP8iT4R7uTn8nN8n/8uT8X5OyS9iDBNKfAZSbVvDah4Mt/LG0rnMS55naVi03vWD4zB2jnt1\n6lROZCgjDZWqaQZNSZK0Uato475wM/eF37EqtDEkDufY/GPsE49gAPUbvU8gMCVOY1Lck5vDz3ki\nuZcfJX/LofEUDo2nbPJ+Un/1MhnXJz+uLNizBoYwnF3i3tVQuSPj2IFmRhgq1esYNCVJ0npWs4oH\nw63MCr+lLSxnUGzmuPwc9o9HU8/ALm1jMEM5I36OPTsO4cbkp9ydXMdT8QFOyS9iArts5Wcg1b41\nrOL2cDX3h1sAOCg/gVNGfpTVb/thjPoGg6YkSQKgndU8HO7knjCD5eEdGuMgjsrP4sB4HANp2qxt\n7sre7JB/k9vDr3gwuZVLk3/iwHgcR8ezaKCx4Gcg9Q4v8QzXJz9mUXiTbeJYTs0/ywR2YVjSTCtL\nyy5PKoRBU5Kkfq6Ddh4Lf+AP4TcsCQtpiI0clp/KIfFEGhm8xdsfSBMnxvOZ3HEQM5Kf8EByC1l8\nhJPyC9iZqQU8A6l3WM1Kbgu/5MHkVkIMHJKfyJHxTOppKLs0qXAGTUmS+qmcnDlhFneH61gU3mRA\nrOeQ/ESmxZMYzNDCH297Ui7O/5G7w2+YGW7gyrrvMDWfzvHxEwyiufDHk2rJizzFjOQSFodWRsVx\nnJp/lu3YueyypK3GoClJUj8TyXkqPMhd4RreCgtIYh0H5MdyaDyVZoZv1cceQANHx7PZIx7IjOQS\nZiczmRvn8KF4HnvEA13wRH3OKtq4LfyCh5LbCTEwLT+JI+PpDLCLqT7OoClJUj8RiTzLo9yZ/Jo3\nwiuEmLBPfgSHxdMYzqgerWUsO3BR/nfcF27iznANv07+izlxFh/OP8VQRvZoLdLW8gJPMiO5hHfC\nW7TE8Zyaf4bx7FR2WVKPMGhKktTHRSIv8AR3JL/mtfACxMCUfBpHxNMZyZjS6kqoY1o8id3i/sxI\nfsKz4VFeSp7h2Phx9o1HEEhKq03aEqto49ZwFQ8ndxBiwqH5KRweP+LhfdSvGDQlSerDXuIZ7kh+\nzcshA2D3eABH5mfQwviSK3vXSMZwfv4VHg138ftwFTckl/JEvI9T8gtLDcLS5pjLHGYkl7AkLGR0\n3I5T88+yLTuWXZbU4wyakiT1QfOZy53Jr3khPAHALnFvjszPYBwTyy1sEwIJ+8aj2DnuxY3Jz3g2\nPMoPkq9zRDyDQ+KHSKgru0Tpfa1kBb8P/8ujyV0ksY7D8tM4PJ5Gnf9uq59y5EuS1Ie8zkvcmVzD\ns+FRAHaMkzkqP7PXrG45lJF8LP9zngoPcFO4nNuSX/BUvJ9T8osYyw5llydt1HM8zg3JpSwJCxkT\nt+fU/DM1+6GO1FMMmpIk9QGtvMpd4VqeSh4AYELclaPys5jIbiVX1n2BwOR4EDvGPbglXMnsZCY/\nSv6O6fEkDo+nuVqnasZKlnNLuJLHkj+QxDqOyM/g0HiyXUwJg6YkSb3aQt7g7nAdc8IsYohsG3fk\nyPxMdmJKrz9UyCCa+Ui8mD07DuGG5Kfck8zg6fgQp+QXsj1p2eWpn3uWR7kh+SlLwyLGxh04Nf8s\nY9m+7LKkmmHQlCSpF3qHt/hDuJ5Hw93EkDM6TuCojjPYlX17fcDc0M5M5XP5/8ft4WoeCL/np3Xf\nYP/8GI6JH2UgTWWXp36mjWXcHH7O7GQmSazjyPxMpseT7GJKG/A3QpKkXmQpi5kZZvBwuIOO0M42\ncRxH5qezRzywTx8OpIFGPhQ/yeR4EDOSS3gouY1n46N8OL+AXdm77PLUT2Q8wg3JpSwL7zAuTuS0\n/I8YzXZllyXVJIOmJEm9wAqWMjPcwIPhVtrDaobHFo7IP8KUOK1frcg6gV34o/wfuSfM4J4wg6vq\n/o0980M4IZ7LYIaWXZ76qBUs5ebwc+Yks6iLAzg6P5tp8cP96ndP6i6DpiSJVbSxiDcrX6GVxdXv\n9TQwPu7E+Lgz27IjDQwsu9R+ZyXLuTfcxP3hZlaHlQyNIzksP5W94+H9dqreAOo5Mp7B7vEAZiSX\n8ERyLy/EJzghnsue8ZA+N3VY5XqaB7kxuYzl4R22jZM4Lf9sTR2HVqpV/fMvlCT1Mzk5S1jIIt5k\ncWithspWFoVKuGwLyzZ532fCwwCEmDCG7Rgfd2Y7dmJ83IltGNunp2uWaTUruT/cwr3hRlaGFQyO\nQzkqP5P94lGuulo1hglcmP8tD4RbuCNczbXJD3gi3suH8wsYxjZll6debjlLuClczpPJ/dTFeo7N\nP8bBHtNV6jKDpiT1ERvrSi4Mb7KYVhbzFnnoeM996uIAhtPC+DiJEXE0w2lhRBzNCFoYwWhWsoL5\nPM/8MJdXw/MsYB6vJy/zMLcD0BgHMb4aOreLOzOeSTQxpKefep+yhtU8FG5jZvgtK8JSGuNgjsk/\nygHxODvKG5GQcHD8EGncl98mP+G58DjfT77GsfFj7BeP8oMQbZaneIAbk5+xIixlfNyJ0/LPMopt\nyy5L6lVCjLHsGrortrYuLbsG9RItLc04XtQVvWGsbLwrWQmV79eVHByHvidADo+jGclomhnerX/E\nO2jnDV7h1TCX+TzPq2EuC8Mb691mmziO8XES27Ez4+NOjGFCn+sAbI3x0s4aHg138YdwPcvCYgbG\nJg6OH+KgeAKNDCr0sfqqSOTx8AduCVeyMqxg+5hycn4hoxhXWk294b1F71rOEm5MfsbT4UEGxHqO\nimdxUDyBpIc+sHC8qKtaWpprfh8Bg6b6NN+w1VW1MlY27EpWvnetKzmiGibfDZWVYNlA41ateQVL\nmc9cXg3VL+ayKrStu74+NjCOHSsdz2oAbWbEVq1paytyvOR08Hi4h7vDb3gnvEV9bODAeDyHxBMZ\nRHMhj9HfLGUxNyWX83R4kLpYz+HxNKbFD5eyT2utvLfo/UUiT4X7uTFcRltYxoS4C6fmn2GbHv6Q\nwvGirjJobh0GTXWZb9jqqp4aK527kpX9I99deKe7Xcm1YbK7XcmtLZLzFguYH57nVeYyP8yllfnE\n8O7fm6FxZHWqbWXK7Vh2oL4X7XdYxHjJyXky3Mdd4VoWhjeoi/XsH49mejyZIQwrqNL+7Wke5HfJ\nZSwL7zAmbs8p+UVsy449WoN/h2rfMhZzY/IzngkPMyA2cEw8mwPicT3WxezM8aKuMmh2Q5qmo4GH\ngWOyLHv2fW5q0FSX+YatripyrKzflXx30Z3udCUrQbKF4T3UldzaVtHGa7xYmXJbDaDLw5J11yex\njrFsX9nXszrldgSja3b10C0ZL5HIMzzEnck1tIZXSWId+8QjOCyeylBGFlyp2ljOreEqHk3uIsSE\nQ+KJHBFP77EPNvw7VLsikSfCvdwULqctLGf7mHJq/hlGMqa0mhwv6qreEDRrYjGgNE3rgR8Cy8uu\nRZI+yJZ0JccxkRH52q7kGEbElprsShZtIE3syB7sGPeAWPkHbzFv8WqnrucC5vFa8iIPcisAg2Jz\np4WGdmJbJvXqfRUjkeeZzR3J1bweXiLEwF75YRweP8IIWsour89qYjCnxIuY3HEwNySXMiu5gWfi\nQ5ycX8hEdi+7PJVkKYu5IbmUZ8Oj1McGPpSfxwHxmD79Piz1tJoImsC/AN8HvlZ2IZIEsJIVlUV3\n1h0CpOtdybUruPa1rmSRAqHavW1hTw6BCO2s5nVeXtfxfDXM5bnwGM+Fxyp3ioEWtl1vyu0oti1l\nelt3vchT3JFczfzwPACT84M5Ip5e6iI1/c0kJnNx/g3uDL/m/nAzl9V9k33zozg2fqxXf4Ch7olE\n5oRZ3BQuZ2VYwQ5xd07NL2IEo8suTepzSg+aaZpeALRmWXZLmqZfgxqdJyWpV4vkrKKNlaxY72tV\nqHzPV6zktTC/m13Jd8Nkf+hKbm0DaGA7dma7uHPlgljZd2ptx3N+mMtrvEBr8iqPchcADbGRbZnE\ndnGndcf3HMzQEp/F+l7mWe5Mfs288DQAadyPI/PTGcP2JVfWPzUwkOPjJ5gcD2JGcgmPJHfwXHyM\nD+efImXfssvTVraEhdyQXMpz4XEaYiMfzj/lIXCkraj0fTTTNL0LiNWvvYEMOC3Lsjc2cZfa2KlU\nUo/KYwcrYxsr4nLaNvhaEZezMl+x7vSG17fF5ayMbcQuvH0MYAAjkzGMqhvLqGQM29SNYVQyhlHJ\nWLapG83A0NQDz1ab0hE7eL3jFea1P8u89ox57c/yej5/vduMSsaww4BdmVj92q5uRwaE+h6t8+X2\nudzQdiVPrXkEgN3r9+Hkpk+w/YCde7QObVp7XMOtK6/l5rZf0U47+zRM56xBn2FoMrzs0lSwGCP3\nr76da1b8hLa4gl0HTOUTgz/PNnV2MdWr1XxzrvSg2VmapncAF7sYkIriTvW1Iydn1QbdxJUsZ2Xo\n1F2kbb3LVq3XeWz74AfZwMDYRCODaGQQA6vfG+MgGhm87vK1l40bPpqweIhdyV5oJct5lReYv+7w\nKs/TFt4kCRmiAAAgAElEQVTd5b8u1jOOHaoLDVU6n8PYZosWGtrUe8sbvMJdyTU8Ex4GYIe4G0fl\nZ7I96WY/lrauVl5lRnIJ88PzNMXBHB/PZWqcXthCVP4dKtc7vM1vk0uZG2bTEBs5Lp7DvvHIPrnQ\nmPoXFwOS1GfkdLx32ikrOgXF5e+GxbBBmGQFq8PKbj/mwFgJgsNpqQbEQeu+rwuODO50WdO6EDmQ\npm7tu9dS30wr/nHvjRoZzE5MYac4Zd1CQwt5o7LCLc9Xw+cLzE+e5/7qfYbEYYxn53VTbrdlRxoY\nuNk1vM0C7grX8kS4H0JkfNyJo/Kz2JE9avYfWlW0MJ4L8r/hoXArt4Vf8Zvkf3gi3stJ+acZzqiy\ny9NmikQeC3dzS7iSVaGNSXFPTskvZJg/U6nH1FRHs4vsaKrL/GRwfatZxTIWrwt/K9cLip06iBvp\nKHY7KMZAI507ioPXC4obdhQHbnBZQzeD4pZyrPRta1jFAuat63rO53mWhkXrrg8xMJoJleBZDaDb\nMHaT3e2142UxrdwdruPxcA8xRMbGHTgyP5Nd2MuA2Qst5i1uSC5lbphDfRzIMfFs9o/HbtF7ke8t\nPe8d3mJG8hNeCE8wMDZxfPwEe8fDe8XvpONFXdUbOpoGTfVp/eUNOydnOe+whEUsZRFLQ/U7i1gS\nFrGMxSxhEavCii5vM8TwnvC3figc/L5BcSCNvWoKan8ZK3rXEhau63hWDq/yIu1hzbrrG+OgdYdX\nWTvttokhANRvs5rfLLySR8Jd5KGDljieI/Mz2I39etW413utXZX05nAFbWE528WdOSW/iBbGb9b2\nfG/pOZHII+EOfh+uYnVYyc5xKifnF/aq49M6XtRVBs2tw6CpLuvtb9iRyCra1oXGpWERS6gGx05h\nchmLiWHTv8uNcTDNDKeZETTH4TQxZP19F9/TZRxMAwP71T/MvX2saMt10M4bvLLelNuFYf116baJ\nYxnFtswNc2hnDSPjGI6IpzM5HtwrDrOirlvGO9wcruDJ5H7q4gAOi6cyPZ5MXTf3OvK9pWcsppUZ\nySW8GJ5iYBzECfFc9oqH9oouZmeOF3WVQXPrMGiqy2r5DbuD9nWdxg2D49qO5BIWsSas2uQ26uKA\nTgFyROU7IxjKCIbEyvdmhlO/Bfue9Re1PFZUnhUsrS40tHZfz7msCm2MSFo4tP1Upsbp3Q4e6l0y\nHuHG5GcsDYsYHbfjlPwixrNTl+/ve8vWFcl5uNrFXBNWsUvcm5PyC3pVF7Mzx4u6yqC5dRg01WVl\nvGFHIitZvslprJXTi1nOEnifLuSg2PxucFwXIofTHEeuC5NNDOl1n9bWKv+4qysiOYt5m0mjJrDo\nre4vcKXeaSUruC38goeTOwgxcFA8gSPjmV1aQMr3lq1nEW9yfXIJL4WnaYyD+VD8JFPitF79d9Hx\noq7qDUHTj2GlbmhnNUvXdiGr01jXBsfOgbLzfl4bGhAbGMoIRjGO5nzEuo7k0GqAbGY4QxjOAHr2\nuH+SPlggYQQt1eNyGjT7i0YGcVL8NJM7DuG3ySXcl9zEM/FhTs4vZBKTyy6v34nkPBhu5bbwS9aE\n1ewa9+Gk/NM04zFQpVpi0JSo/NFawTKWsLBTF3LxBl3IRbSFZe+zkcAQhjGa7RgSh1e7kCOrXch3\np7QOZFCv/rRVkvqriezGxfk3uCtcy73hd1xR9232zg/nuHgOTQwuu7x+YSFvcH3yY14OGU1xMCfn\nF7JnPMS/q1INMmiqz1vNKpaycF3XcWNTWpeymDx0bHIbDbGRoYxgbNx+/X0hO50ewjAS6nrwmUmS\nelo9DRwbP8bkeBAzkh/zWHI3z8fHOTE/n905oOzy+qycnAfCLdwerqY9rGa3uD8fzj/FEIaVXZqk\nTTBoqk9azFtcl/yQ1kWv0Fa36UN6JLGOIQxjHBNpjusHx+ZO+0UOpKkHq5ck1bpxTOSi/O+5N/yO\nu8J1/Krue+wW9+fE/HyncBbsbRZwffJjXgnPMSg2c1r+WfaIB9rFlGqcQVN9zju8zeXJt1gU3mRs\nMoFt23eqhsbhlamsnVZjHczQfnUID0lSceoYwKHxFHaL+zMjuYRnwkPMS57iuHgOe8fDDUJbKCfn\n/nAzd4SraQ9r2CM/kBPj+QxmaNmlSeoCg6b6lCUsXBcyj8hP56yR57t6myRpqxrFOC7Iv87D4Q5u\nDb9gRnIJT8T7ODn/NC00l11er/QWr/Gb5Ee8GuYyKDbzkY6L2YMDyy5LUjcYNNVnLGUxlyffYmF4\ng8PyUzk8fqTskiRJ/UQgYf94DLvEvbkx+SnPhcf5QfJ1jl5xGk1hJE1xCE0MYRCV7400OaNmI3I6\nuDfcxJ3hGjrCGibnB3NiPI9BBnap1zFoqk9YxmIuT77J2+F1pucnc2Q80ylLkqQeN4xt+Hj+RZ4I\n93Jz+Dk3r/wVG8uTIQYaGbwueDYxhEGx02mGvCecDmIIA2jo+SfVQ1p5ld8kP+K18AKD4zBO6vgU\nu7F/2WVJ2kwGTfV6y1nC5cm3eSss4JD8RI6OZxsyJUmlCQSmxGnsHKeycNg83ljSygqW0Vb9WhE6\nnWYZC3mTGHK68qerPjasC6MbDafVgNo5nDYyqKa7pzkdzAo3cle4lo7QzpR8GifEc+1iSr2cQVO9\n2gqWcnnyLVrDqxyUn8Cx8eOGTElSTWhiCHs3HEJr3GCtgLjh2cgqVnQKo8tpC8vWD6csoy28e3oR\nb/JGeLlL4XRj3dOmOLgaRJs3GVjre6B7+ibzuT75Ea+FFxkSh3FSx6dJ2XerP66krc+gqV6rEjK/\nzZthPgfkx3J8/IQhU5LU6wQqQbCRwcCYyoVxIzfc4LJ21lRCaTV8ruzULV0XUjcIrItorRw3ugt/\nLgfEhk1O7W1aG1w3mN7bxOAudU87aGdmuIG7w3XkoYOp+XROiOfSxJAPLkxSr2DQVK/UxnKuSP6Z\nN8LL7J8fzYfieYZMSVK/MoD66qG7Oh23c8OAutHuadt7wuh65zeY3tud7ikx0MSgTexrWumeNjCQ\n+8JNvB5eojmO4KSOT7Mre2/pyyGpxhg01eusZDk/T/6Z18NL7JsfxYnxfEOmJEldUOmeDqKRQYxg\ndOXCLnRPO2jvFEaXb7RbuuG+p4t56327p3vnh3N8PKfayZXU1xg01ausZAVXJP/Ca+FF9s4P56T4\nqZpe4ECSpL6gjgEMYThDutk9Xc3K9cLo2nA6Jk5gB3bb6nVLKo9BU73GKtq4MvkOr4UX2Cs/lFPi\nhYZMSZJqVCAwkCYG0sQIWioXbqx7KqlP8r909QqrWcmVyb8yPzzPlHwap8TPGDIlSZKkGuV/6qp5\nq1nFlcm/8kp4lsn5wZwWP0vi0JUkSZJqlv+tq6atYRVXJf/GyyFjj/xATo8Xk1BXdlmSJEmS3odB\nUzVrDau5Kvl35oWn2S3ux+nxjw2ZkiRJUi9g0FRNamc1v0y+y4vhSXaN+3Bm/nnqXLtKkiRJ6hUM\nmqo57azhl8n3mBvmsEvci7Py/2PIlCRJknoRg6ZqSgftXJ38J8+Hx9kpTuXs/E8ZQH3ZZUmSJEnq\nBoOmakYlZP4Xz4ZHmRT35KP5nzGAhrLLkiRJktRNBk3VhA7auSb5Pll4mIlxDz6Wf4F6Q6YkSZLU\nKxk0VbqcDq4LP+Tp8CA7xN35eP4X1DOw7LIkSZIkbSaDpkqVk3Nd+B+eTO5n+5hyTv4XNBgyJUmS\npF7NoKnS5ORcH37EE8m9bBd34Zz8izTQWHZZkiRJkraQQVOliOT8NlzC7GQm4+NOnJv/FQNpKrss\nSZIkSQUwaKrHVULmpTyW/IFt4yTOzb9kyJQkSZL6EIOmelQkcmO4jEeTuxgXJ3Ju/iUaGVR2WZIk\nSZIKZNBUj4lEbgqX83ByO2Pj9nwy/zJNDC67LEmSJEkFM2iqR0Qit4Sf82ByK6PjBD6Zf4UmhpRd\nliRJkqStwKCprS4S+X34X+5PbqEljue8/CsMornssiRJkiRtJQZNbVWRyG3hl9yX3MSoOI7z8q8y\nmKFllyVJkiRpKzJoaquJRO4IVzMruYFt4ljOy7/GEIaVXZYkSZKkrcygqa3mrnAt9yQzGBnHcF7+\nVZoZXnZJkiRJknqAQVNbxd3hOu5OrmNEHM35+dcYysiyS5IkSZLUQwyaKtw9YQZ3JtcwPI7i/Pyr\nhkxJkiSpnzFoqlCzwg3cnvyKYXEbzs+/xjBGlV2SJEmSpB5m0FRh7gs3cWvyC4bGkZyff43htJRd\nkiRJkqQSGDRViAfCLdySXElzHMH5+dcYweiyS5IkSZJUEoOmttiD4VZuSq5gSBzG+flXGcmYskuS\nJEmSVCKDprbIw+F2fpdcxuA4jPPzr7EN48ouSZIkSVLJDJrabI+Gu7gh+SmDYjPn5V9hFNuWXZIk\nSZKkGmDQ1GZ5LPyBGeEnNMUhnJd/ldFsV3ZJkiRJkmqEQVPdNjvM5PrwY5oYxHn5VxnDhLJLkiRJ\nklRDDJrqlifCvfwm/A+NNPHJ/CuMZfuyS5IkSZJUYwya6rInw/1cG35AA018Mv8y45hYdkmSJEmS\napBBU13yNA9yTfg+9Qzk3PxLbMukskuSJEmSVKMMmvpAGQ/z6+S/qaeBc/MvsR07lV2SJEmSpBpm\n0NT7epZH+VXyn9QxgE/kf8kEdim7JEmSJEk1zqCpTXqOx/lV8j3qqOMT+V+yPWnZJUmSJEnqBQya\n2qjnmc0vk/8gkPDx/IvswG5llyRJkiSplxhQdgEAaZrWAT8CdgUi8MdZlj1ZblX91ws8wS+T7xKA\nj+d/zo7sUXZJkiRJknqRWulongzkWZYdCvwN8I2S6+m3XuQprkr+nUjko/kXmMSeZZckSZIkqZep\niaCZZdlvgIurZycCi8qrpv96iWe4Kvk3cjr4aP4FdmZq2SVJkiRJ6oVqYuosQJZlHWma/hQ4HTir\n5HL6nZd5liuTf6WDDs7O/4xd2KvskiRJkiT1UjXR0Vwry7ILqOyn+aM0TZtKLqffeIXnuDL5Dh20\nc1b+eVL2KbskSZIkSb1YTXQ00zQ9D9guy7JvAm1AXv3aqJaW5p4qrc+b1/4s/7v0X2mPq7lgyF+y\nT8O0sksqnONFXeVYUXc4XtRVjhV1h+NFfUWIMZZdA9Xu5U+BsUA98M0sy2Zs4uaxtXVpT5XWp73G\ni1yefJvVtHFG/ByT48Fll1S4lpZmHC/qCseKusPxoq5yrKg7HC/qqpaW5lB2DR+kJjqaWZa1AR8r\nu47+ZAHzuCL5Z1bTxkfixX0yZEqSJEkqR03to6me8Tovc0XybVayglPjZ5kS+950WUmSJEnlMWj2\nM28ynyuSb9MWlnNqvIi94qFllyRJkiSpjzFo9iOtvMplyTdZEZZycn4he8fDyy5JkiRJUh9k0Own\n3uI1Lku+xYqwlJPyC9g3Hll2SZIkSZL6KINmP/A2C7gs+RbLwzucmJ/PfvHoskuSJEmS1IcZNPu4\nhbzBZcm3WBYWc0J+LgfEY8suSZIkSVIfZ9DswxbxJpcl32RpWMRx+TkcFE8ouyRJkiRJ/YBBs49a\nTCuXJd9kSVjIMfnHOCSeWHZJkiRJkvoJg2Yf9A5vcVnyLd4Jb3NUfhbT40lllyRJkiSpHxlQdgHd\n9Z13vgzJAAbSyMDYxEAaaaCJgZ2/4trTjetdPoAGAqHsp7BVLWEhlyXfYnFo5Yj8DA6Lp5ZdkiRJ\nkqR+ptcFzdc7XmFVWFk5083MGGKyfiCtBtGG2LjB5e8G1gbee10DjSQ12AxeyiIuS77JovAmh+Wn\ncUT8SNklSZIkSeqHel3Q/M7I/+WN1sWsZiWraGPVuu9trApt606v7nw5bawKK6uXV84v4W1W0UYM\nsduBFegUTjt3VBvXdVMbNgy0cSNBlibqCvoRLGMxlyXfYmF4g+n5KRwZzyhku5IkSZLUXb0uaAIk\n1NHIYBoZvP4V8X3utJHrIpE1rF4/kK4NqWHDy6qhdoPLV7CMRbxFR1hT2Wg3Q2tdrH/PFN+GjQbT\nxk5d1vWv66CdK5Pv8HZYwCH5hzk6ntXnpwhLkiRJql29MmgWJRBoYCANDKSZ4etfuanQuonL21lT\n7aKu30ldvUEwXXd9eG+IXc4SVm/mtGCAg/ITODZ+zJApSZIkqVT9OmgWaQD1DKCeQTSvf0U3A2sk\nZzWr3tNlXT+crj8NeFVoY4e4O9Pihw2ZkiRJkkpn0KwxgXcXLHqPboZWSZIkSSpD7S2dKkmSJEnq\n1QyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJkiQVyqApSZIkSSqUQVOSJEmSVCiDpiRJkiSp\nUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIkSZIKZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJU\nKIOmJEmSJKlQBk1JkiRJUqEMmpIkSZKkQhk0JUmSJEmFMmhKkiRJkgpl0JQkSZIkFcqgKUmSJEkq\nlEFTkiRJklQog6YkSZIkqVAGTUmSJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJkiQV\nyqApSZIkSSqUQVOSJEmSVCiDpiRJkiSpUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIkSZIK\nZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJUKIOmJEmSJKlQBk1JkiRJUqEGlF1Amqb1wE+AHYCBwD9l\nWTaj3KokSZIkSZurFjqa5wKtWZYdDnwI+M+S65EkSZIkbYHSO5rAr4Crq6cToL3EWiRJkiRJW6j0\noJll2XKANE2bqYTOvy63IkmSJEnSlqiFqbOkaToBuB24LMuyq8quR5IkSZK0+UKMsdQC0jQdA9wJ\n/EmWZXd04S7lFixJkiRJ5QplF/BBaiFofhc4G8g6XXxilmUrN3GX2Nq6dOsXpj6hpaUZx4u6wrGi\n7nC8qKscK+oOx4u6qqWlueaDZi3so/kF4Atl1yFJkiRJKkZN7KMpSZIkSeo7DJqSJEmSpEIZNCVJ\nkiRJhTJoSpIkSZIKZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJUKIOmJEmSJKlQBk1JkiRJUqEMmpIk\nSZKkQhk0JUmSJEmFMmhKkiRJkgpl0JQkSZIkFcqgKUmSJEkqlEFTkiRJklQog6YkSZIkqVAGTUmS\nJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJkiQVyqApSZIkSSqUQVOSJEmSVCiDpiRJ\nkiSpUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIkSZIKZdCUJEmSJBXKoClJkiRJKpRBU5Ik\nSZJUKIOmJEmSJKlQBk1JkiRJUqEMmpIkSZKkQhk0JUmSJEmFMmhKkiRJkgpl0JQkSZIkFcqgKUmS\nJEkqlEFTkiRJklQog6YkSZIkqVAGTUmSJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJ\nkiQVyqApSZIkSSqUQVOSJEmSVCiDpiRJkiSpUAZNSZIkSVKhDJqSJEmSpEIZNCVJkiRJhTJoSpIk\nSZIKZdCUJEmSJBXKoClJkiRJKpRBU5IkSZJUKIOmJEmSJKlQBk1JkiRJUqFqLmimaXpQmqZ3lF2H\nJEmSJGnzDCi7gM7SNP0y8ElgWdm1SJIkSZI2T611NJ8HzgBC2YVIkiRJkjZPTQXNLMuuAdrLrkOS\nJEmStPlqKmhKkiRJknq/mtpHs6taWprLLkG9iONFXeVYUXc4XtRVjhV1h+NFfUWtBs34fle2ti7t\nqTrUy7W0NDte1CWOFXWH40Vd5VhRdzhe1FW94QOJmguaWZbNA6aVXYckSZIkafO4j6YkSZIkqVAG\nTUmSJElSoQyakiRJkqRCGTQlSZIkSYUyaEqSJEmSCmXQlCRJkiQVyqApSZIkSSqUQVOSJEmSVCiD\npiRJkiSpUAZNSZL+//buPVqusrzj+DdAEAgoSoItAtKUxWMR7UWwVKghBSFCWy+9KSUa0hRSV1sX\nuqoogqmClyIXKZRGi+ViqS3WaqkiN5UWUNoiWrX4eGnLWkiVQIopYhJJTv9430MmJ3POmZmzw+zM\n+X7WyiKzz+x3v5vzy573efdlJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0\nJUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgL\nTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXK\nQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmN\nstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElS\noyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS\n1CgLTUmSJElSoyw0JUmSJEmNstCUJEmSJDXKQlOSJEmS1CgLTUmSJElSoyw0JUmSJEmNstCUJEmS\nJDXKQlOSJEmS1Khdht0BgIjYCfgz4PnABmBFZn57uL2SJEmSJA2iLWc0Xw7smpkvAs4ELhhyfyRJ\nkiRJA2pLoXkU8GmAzLwLOHy43ZEkSZIkDaotheZTgXUdrzfVy2klSZIkSTuYthRz64C9Ol7vlJmb\nh9UZSZIkSdLgWvEwIOAO4FeA6yLiSODfp3jvnAUL9prix9LWzIt6ZVbUD/OiXpkV9cO8aFS0pdD8\ne+AlEXFHfX3qMDsjSZIkSRrcnLGxsWH3QZIkSZI0Qtpyj6YkSZIkaURYaEqSJEmSGmWhKUmSJElq\nlIWmJEmSJKlRFpqSJEmSpEZN+fUmEXEMcHpmvnqQxiPiKcApmXnFIOtP0e7BwMcy8/k9vn8V8D+Z\nuXqAbe0B3Awsz8yMiLnAh4BnA08Bzs3M6/ttd5S0MScRcR5wLDAGnJmZt/WwzioGzMmEdrrmMyIW\nAddk5oEzaX9H19K8fALYB/gR8FhmntTDOquYYV4i4nzgKMqx+AOZ+RcRMR+4FtgNeAA4NTN/OOg2\ndmRty0pEnACcWV/OAY4GnpuZOc16q9g+WTmQ8nm0c+3PaZn5jUG3MQralpna5gXALwIbgbdn5q09\nrLOKATITEa8GXg88DnwFeF1mjkXEWyjfVz4XuDQzr+pvL0ZPm7IycaxZly2gfM/8YZm5sYc2lgGR\nmW/pc9vHAu+kfP49CLwmM38YEecCx1HGUW/MzDv7aXeUzSQ72zM3EbEz8EHgEMrvbWVmfm3COp8D\ndgce61h8fGb+qEv7y4B9MvOCCcu7ZqZbH6c7oznT7z75cWDFDNvYSkQsBf4amN/HagPtR0QcDvwT\n8BMdbfw2sCYzXwwsAS4dpO0R06qcRMTPAi/MzCOBVwHv73HVGX/Xz2T5jIgDgDfQnu+uHaZW5aU6\nODOPzszFvRSZ1Yz2IyIWAwsz80WUguXNEbE3cA7w4XqMuQc4fSbb2cG1KiuZeWPNyGLgH4H3TFdk\nVtsrK+8ALqn9eRfw7plsZ0S0KjMRcRJwaGa+EHgZcHkdDE6n7/2IiN0pg79jMvNo4GnAL9dB8S/U\n/BwDLOy37RHViqx0G2vWSa2bgH37aGrQ/bkMeFlmLgK+CayIiACOreOopcAlA7Y9qmaSne2WG8pk\n0ub67/9twHldVh0Dlo5/ltU/2xSZHe/tZpvMTNbP6Qa9c7otrGdmzgU2Ad+mDITmAn8JHAjsCvw+\n8DvAoRFxNqWo/W5mro6I5wCXZ+biiPgqkMAGYCVldvYZdVN/mJlfnbD5tcCiut2+RMROwAeA/Sm/\n6H/IzLMj4kpgPXBQXb4sM++p+/Fy4JqOZq4DPlr/vhNl1nC2a1VOMvOeiFhSXx4E/G8/OzNATjpt\nk8+I2A24HDgNuLufvoyoVuUlIp4J7B0R1wN7U4qHT/a6MzPIy52UQnLczpTZwaPq/weAGygFxMW9\n9mfEtCorHdvfnzL4OryfnWk4KxuBNwLfr8vmArPyzPcEbcvMocCNAJn5cESsBQ4DvtzLzvSTGeBL\nlIJyfV19l/qe44GvRMTHgacCf9TLtmeBtmSl21hzE+WqrIHGDBHxbuAFlCt1vpyZy+tZ8oMoxeuz\ngTMy8yZgUWauqauOH0c2AnvUs29Pq6+1xTbZaUNuMvPjdSwDU49/e+3/HOCEiDgR2BNYlZk30D0z\nXfV9j2ZEzKEc9F6RmccA36Ec4FYC/1lnzF4F/Hzt8H9k5junaHIe8I7MPBk4C7glM3+p7uDlE9+c\nmZ/MzMcmLu/RAcDnM3NJ7d/KunwM+O+6/E8pBQGZeWdm3j9h+z/IzEcjYi9K0XnWgH0ZaS3IyaZ6\n+ez1lH/k/egrJxO22y2flwLnZ+YDffZj1hhyXuYC76OcbXglcFG9ZKlXA+UlMzdk5iP1cvyrgNWZ\n+QPKQHC8eHiU8iGvatjHluoNwIVTzAJPpsmsPJaZD2fm4/Xsw/nAH/fZn1lhyJn5ErAkInaJiIXA\nc4E9+uh+z5nJzLHxwV9E/AEwLzNvBhZQio5fr+v/VR/bn1WGkZVJxpq3ZObaAfdhL2BtZh4PHAEc\nGRH7UTKzPjNPpFxefUbd1vfqeq+knPG+OjP/i3Lp9dcpl2a+b5C+zBZtyU1dvqlORF1CuQ2nm6sj\n4rP1z6m1/x/s0v8x4MHMPJZytvSyuo3OzCwCrp5sRwa5jG8BZfbsuvLZxu6UEM6nzL6Tmd8C3h8R\nB03SxsRKevzSo+cBiyPit+rrpw/QPwDqB/LcjkH/GOVs0xH1MqR1lHssx43PFt9POaMwVdsHAB8D\nLsvMjwzaxxE39Jxk5ll1Vu8LEfHP9cC5le2Zk9r+fpRL3X6y/n94RkRcWw8e2mKYefkuZeC+GVgT\nEbHTp+cAAARRSURBVPdQ7m9YM+F9jeclIp5OmbD6bGa+ty5eRyk21wB7AY9Msr+z1VCPLfUM00nA\nlPdBPUlZGb+s9jLKPT/fnKpPs9jQMpOZN0fEEcDngK8BXwQe6raBJjJT8/knwMHAr9WfPwTcm5mP\nA9+IiPURMT8zu/Zjlhv62KUf9fc9LzP/ry4ao5xdemZEXEuZrNyTMqEKW2dmt452zqBMtJ6QmRsj\n4uTa1kLK59HtEXFXZn5npn0eUfNpUW4yc1lEvBm4KyJ+Kre9f3JpdtzPHxH7Aj/Wpf/folyeS2Y+\nGBHrImKfLFdnjGdmSU5xD/EgT519iBLQX81yX8h7gFuAeykzJ0TEwoi4hnL6dXwb6ym/BICfm9Dm\n5vrfe4GLarunUGZuB3U68Kb69/0oN6suAx7JzFOAC+lvVhF44jK7m4A3ZeaVM+jfqBtaTiJicUSM\n3zu7gXI54ma62y45GZeZD2Tmc3LLfV1rLTK7GuZx5TjKAJ6I2JNyWdu9k/SzsbxEuZ/qVuCKzOy8\nj+IO4MT695dSD/J6wrA/gw4Dvp6ZG6bp53bPSi0+LqYMDr/YS1uz1DA/jw4B7s9yz9S5lAdrTDYh\n0ERmVlOK0Vfklktob6c8U2J88nMe8PA07cxWwz6+9OskyhltgGcB36N8buzfcTZsdya5TBggIs6i\nTIi/pOMs6jzg0cwcoxSrG5jBWGgWeJgW5CYilkZ58BeUCYfNdB//TszDZLkHOLK2/Sxgj1pkdstM\nV9Od0RwDjo+If+1YdjLllPun6kzK94HXAF8APhTlaUY71/c8COxazyqtBv62XgN8N91vMD0PuCIi\nTqPMoLx9mr4BT9w0/TOds7yUB7L8XUTcUfvxKcoM37UR8QLgPuDf6kG3s72xSfo27q2US9nOiYhz\n6rKXdhzQZ6O25eQ24Dci4va6jUsz874nOSeT/WzGDxwaAa3KS2Z+OiKOi4jPUz4AzszMtU9CXlZS\nbuI/rfYNyqDyXOCqiPhdylnN2Twx0aqsVIcw4RkBQ8jKGLAcuIhypuLqOgudmbmS2a1tmbkPOC8i\nfo8y4FsO2yczUR6Et5wyOfWZmomLM/MTEfHiiPgXygD3dbWAmO3alpXJ+ghARPw05f7tMzp+fiNw\neh3vrAd+k3JMODsiPkO5YucuysTFVu1RMrMv5QF0dwM31Mx8hHJP4FERcSclMx/2iomtdMvOhQw/\nNx8FroyI2yg5eH1mboiI1wLklqdNb7WdzNwcERNz/1rKfZ77RMStlMmHFfWE28TM/E1m/nm3Ds0Z\nG9vxjzVR7qdakZk+cU+TMifqh3lRr8yK+mVm1K8oX2Xx1sx827D7oh1LRDwPODwz+31myYwNculs\nG83BG5U1PXOifpgX9cqsqF9mRv3aBXjvtO+StrV2GEUmjMgZTUmSJElSe4zKGU1JkiRJUktYaEqS\nJEmSGmWhKUmSJElqlIWmJEmSJKlRFpqSJEmSpEb9Pyd+/o3Qbqr1AAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Python Homework Average Difficulty" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "homework_averages = homework_data[::1].mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 8 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "homework_averages.plot(color='#6ced50', figsize=(15,7), ylim=(0, 6))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 9, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA5kAAAGpCAYAAAAHs/KiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYXNd9p/n3VDdio5EbOREEcAiSYgRAiCIJBoikZEkU\nZc86jseyZ0dajz3e2Zm1Rx7ba3vGaR1mbU/2eByetb1j75KUPfaIEhOowAAmMeoARCAigQZBECAy\nus7+cW8XusFuJF6gqhvv53nwoKvurdu/6j5ddb91wg05ZyRJkiRJqkKt2QVIkiRJkoYPQ6YkSZIk\nqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKtPe7ALORozxS8CngRHAv00p/UmTS5Ik\nSZIkDaDlezJjjLcDH00p3QzcDixsakGSJEmSpEENhZ7Mu4FXYowPAeOB/73J9UiSJEmSBjEUQmYX\nMBf4FEUv5l8DVzS1IkmSJEnSgIZCyNwDvJFSOgGsizEeiTFOTSntGWjnnHMOIVzcCiVJkiSpdTQ1\nEA2FkPkN4KeA34kxzgI6gHcG2zmEQHf3gYtVm3TWuro6bZtqSbZNtTLbp1qVbVOtrKurs6nfv+UX\n/kkp/S3wYozxWYqhsj+eUspNLkuSJEmSNICh0JNJSulnml2DJEmSJOnMWr4nU5IkSZI0dBgyJUmS\nJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJ\nkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIk\nSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5IkSZJUGUOmJEmS\nJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJ\nklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIk\nSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmS\nJFXGkClJkiRJqowhU5IkSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJ\nkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKtDe7gLMR\nY3wBeK+8uTGl9GPNrEeSJEmSNLCWD5kxxtEAKaU7ml2LJEmSJOn0Wj5kAtcCY2OMD1PU+7MppWea\nXJMkSZIkaQBDYU7mQeA3U0r3AF8E/izGOBTqliRJkqRLzlDoyVwHvAmQUlofY3wHmAlsH+wBXV2d\nF6k06dzYNtWqbJtqZbZPtSrbplpNT+5hZ88WoLltcyiEzM8D1wD/OMY4CxgP7DzdA7q7D1yMuqRz\n0tXVadtUS7JtqpXZPtWqbJtqJXV6eCU8xdfDl9kbdvH7kx9saj1DIWT+IfBHMcYny9ufTynVm1mQ\nJEmSJDVbnR5eDU/zZHiIvWEXtdzGsvqdzS6r9UNmSukE8PebXYckSZIktYI6dV4rw+U74W1quY0b\n63dyS/4UE5ja7PJaP2RKkiRJkvqGyy/zTthJLbdxQ/0ObsmfZmILhMtehkxJkiRJamF16rwenuXJ\n8BB7wo4yXN5ehsuuZpf3AYZMSZIkSWpBuREuv0x32E7INa6vr+KW/BkmtWC47GXIlCRJkqQWkqnz\nBs+xpvZgI1xeV7+NW/NnmMS0Zpd3RoZMSZIkSWoBveHyydpD7A7bCLnGtfVbuTV/hslMb3Z5Z82Q\nKUmSJElNlKnzHZ7nydpD7ApbCTlwbf0Wbs33Dalw2cuQKUmSJElNkMkknmdN7SF2hS2EHLim/jFu\nzfcxhRnNLu+8GTIlSZIk6SLKZNbxAmtqD/J2GS4/Ur+ZW/N9TGVms8v70AyZkiRJknQRFOHyxTJc\nvgU5cHX9o9yW72Mqs5pdXmUMmZIkSZJ0AWUy63mJNbUH2Rk2Qw5cVV/Jbfk+upjd7PIqZ8iUJEmS\npAugCJff5snag+wIm8pweRO35vuYxpxml3fBGDIlSZIkqUKZzJu8zJrag+wIGwG4sr6C2/Jnh3W4\n7GXIlCRJkqQKZDIbeIU1tQfZHjYAsDQv57b6Z5nO3CZXd/EYMiVJkiTpQ8hkNvIqT9QeaITLK/Iy\nVtU/y3TmNbm6i8+QKUmSJEnnoQiXr7Gm9iDbwnoArsg3clv9s8xgfpOrax5DpiRJkiSdg0xmE6+z\npvYAW8twGfMN3Fb/LDNZ0NziWoAhU5IkSZLOQiazmTdYU3uQLSEBsCRfz6r6/YbLPgyZkiRJknQG\nm3mDJ2oPNMLl4nwdq+r3M4vLmlxZ6zFkSpIkSdIgNvMd1tQe5K3wBgCL87XcVr+f2SxscmWty5Ap\nSZIkSad4i8Sa2gNsLsPlonwNq+r3M5vLm1xZ6zNkSpIkSVJpC4k1tQfZFF4H4PJ8Davqn2UOi5pc\n2dBhyJQkSZJ0ydvKep6oPcCm8BoAC/PVrKrfz1wWN7myoceQKUmSJOmStZX1rKk9yMbwKmC4rIIh\nU5IkSdIlZxsbWFN7gA3hFQAuy1eyqn4/84hNrmzoM2RKkiRJZ5DJ7GcvO9jI9rCR2sEeOsM0uvIc\npjOHMYxrdok6S9vZwJrag7wZXgZgQRku5xsuK2PIlCRJkk5xmPfZwSa2h43sCBvZwUbeD++d3OEo\nUDt5c1yeyDTm0JVnM525dOU5dDGbkYy66LVrYNvZWIbLbwMwPy9lVf1+FnBFkysbfgyZkiRJuqQd\n5xhv8xY7wka2U4TKvWFXv33G58lckZcxOy9kVl7IzEldrNu3jt1sY3fYRjfb2BhebczrAyAHJtFV\nhs85TGMO0/IcpjCDNk/DL5odbGJN7UHWh5cAmJcjt9c/xwKWNrmy4cvWLUmSpEtGnTrdbG/0Tm4P\nG9nNNuqhp7HP6DyWhflqZuWFRahkIZ1M7HecrvZORueu4kYu/jvCIbrZ3gidu8M2drONFF4ghRca\nj63lNqYys1/wnMYcJjKV0Ld7VB/KTjazpvYg68KLQBEui57LpQRCk6sb3gyZkiRJGpYymffYw/Y+\nPZQ72czxcLSxT1sewSwuY3a9CJOz8kImM/28QshoxjKXxczNi3sLIJM5yH52s43uMnT2hs/dtW28\n1ufxI/IoupjdCJ298z07mGAoOgc72cyTtYcawX5uXsyq+ue4jCv9OV4khkxJkiQNC4c40AiT28ue\nykPhQGN7yIEuZjOrvpDZZaCcxpwLOnQ1EBjHBMYxgYX5quLODJk67/EOu/qEz+6wrRi2W9vY7xhj\n8rh+PZ5FD+hsRtNxweoeit5mC2tqD5LC8wDMyYu5vX4/l3GV4fIiM2RKkiRpyDnGUXayud+w132h\nu98+E/NUFtSXMoti2OtMFjCS0U2quL9AjYl0MZEuYr6+uDNDDyfYy66TvZ3l0Nu3SLxV+06/Y4zP\nkz8w33MqsxjByCY8o+bZxRbW1B7iO+E5AGbny7m9/jkWcrXhskkMmZIkSWppPZygm+2N3skd5TzK\nHHJjnzF5HIvyNcwqF+aZzUI6GN/Eqs9PG+10MZuuPJuruKkx3/M4R+lmB91hW7/ezzfDy41LcUDR\nWzuZ6XT19nyWAXQy06nR1qRndWHsYitP1h7ijbAWKMLlqvr9XM5HDJdNZsiUJElSy8hk3mV3Y6XX\n7WEjb7OZE+F4Y5/2PJI5LGZ2n2GvE+ka1sFiBKOYxWXMypcVd5Th8zAHB5zv+U54rtGzB9CW25nK\nrFOG3M5hAlOG3M9tN9t4MjzE67VnAZiVF7Kqfj+LuGbIPZfhypApSZKapk6dw7zPIQ5wkP0cDPsb\nXx/iAJMOTaQtjKUzT6STSXQykXFM9PIPw8j7vFfOo9zAjrCJHWzkcDjY2B5yjenMYVa5MM/svJAu\nZg+7XrnzNYYO5hOZn2NxR7nY0Pvs6xc6ixC6nV21Lf0ePzKPbgy17eoz77MVe4G72c6a8CCvh7UQ\nMrPyZayqf85w2YJ8hZYkSZXJZI5yqAiMZVA8GPp8PUCQ7Dvk8QOOwEBXdBibOxuhszNPYhxlCM3l\nfUyig/HUvBxESznKYXayuRj2Wg59fS+802+fSXkal9c/0ljpdSbzGcGoJlU8NAVC+fcxicvzR4o7\nc/Ghzj66+8313B22sYNNbKu92e8YHXl8v9BZhNDZjGLMRX8+3WznyfBlXgvPQMjMzAtY1XM/i7nO\ncNmiDJmSJGlQmcxxjpahsQyGZWjsGyIP9dne93qDgxmdO+igk8nMoCOPpyN3MpbxdJT/xuZOxjKO\nsRNrbN23g/1hLwfYx/vs40B4lwPs4112sytsYbBzzJBDGT6L3s++AXRcn57RsYzz2oQXQA8n2MUW\ndoRNjRVfu9kBfT5U6MjjWZyvK65FmRcyi8sYS2cTqx7eatSYzHQmM50r8o3FnRlOcJx3ePsDQ243\nh9fZHF7vd4wJeeoHVrqdykzaGVF5vXvYwZPhIV4tw+WMPJ9VPZ9jieGy5RkyJUm6xJzgWCMQFqHx\nwGlD44lw7IzHHJlH08F4ZrKgDI3jy9DYWYbG3gDZyVg6z3q4a9eITjqZ05h/BvT7+iiHi+DZJ3we\n4N3iX9jXGDK4I2waNIzWctvJIMokxvfrGT0ZRkcx1hPbQWTqvMOufiu9vs1b9IQTjX1G5tHMJxaX\nDykX5hk/BOcDDkftjGA6c5me5xZ3lH9jxzhCN9s/sNLt+vAS68NLjceHXGMKMxpDbqeX/09i2nmN\nJtjDTr4evsyr4SlyyMzI81jVcz9LuMH2MkQYMiVJGuJ6OMEh3i+D4f7TDk89yH6OhSNnPGZbHkEH\nnXQxqwiMubPRy3gyNJYBkvFNu2TCKMYwijFMYWb/IAqN25nMEQ6V4XMf7/cNo6H4/332lcM4Nwwa\nRtvzyEZPaGc+GUo7T+klbZVLZFxIB3i3sSjPjrCBHWzmaDjU2F7LbUxnbr/rUU5llsOXh5iRjGY2\nlzM7X17cUf5NHeJAv9C5q/x/T20H8Gzj8e15BF3M/sB8z04mDRgW32EnT/YJl9PLcBkNl0OOIVOS\npBaTqXOYg41QeGpI7N/zuL/fIimDqeU2xtLJJKYVgbHsWRxbBsVTb49k9LA5qQsExtDBGDqYdppe\n0UydQ7zfCKO9PaPv9wmjB9jHVtaRa4PPIx2Vx5Q9o/17QvvNHWUC7UPkWoZHOMgONhXDXsueygPh\n3X77TMkzWFK/rhEoZzBvyDw/nbuxdLKApSzIS4s7ysWG9rP3A/M9d7OdnbXN/R4/Oo/tFzon5Wm8\nGp7ilfAtcshMy3NZ1fNZruBGh7IPUYZMSZIusP6L4Rwoehw/zGI4ADkwlnGMYyLT8jw68slexSI0\n9p/jONqhnmcUqDV+XjOYP2gYrdPD+7w3YAAthugWX+8JOwftFQUYkzuK+aGn9ISeunjRxVxJ9wTH\neJutZe9kESrfCTv77TMuTyTmG4prUZbzKEfTcdFqVGsKBCYwhQlMYXG+trgzF38ve9l9MnSWQ2+3\nsZ6ttXX9jjEtz2FVz/2Gy2HAkClJUgVOcIzXw1p2svlDLIYzlg7GM5npZ5jXOJ4xjHPoYZPUaGM8\nkxnP5OKOQcLoCY6XYbQYjrs/vNv4ureX9D32sjtsGzyM5kAH48vQeepKun0XLzr3lXTr1HmHnWXv\n5Aa2h43sYmu/tjoqj+GyfGWfQLnw5POWzkKNNqYyk6nMZGle3vgbOcEx9rCT3WEbe9jJzDzfcDmM\nGDIlSfoQ9tHNc+ExXgpPcigc6LdtZB7NWDobi+H0ndc4lpNDVntve+3H4aWdEUxkKhOZWtwxSBg9\nxtFy8aJTekV5lwOhCKV72Mnb4a3TrKRbYxwTGpet6Hdd0fLrEYxkF1vYHoq5lDvZ1G9+bltuZwbz\nmd3nepRTmOFJvy6IdkYyg/nMyPObXYouAN/NJEk6R5k6G3mNtbVHWM9L5JAZk8dxc/27uCIvYxwT\n6KDTa/vprIxkVOOyEqdbvOgoh/ssXrTvA3NHD/Aub/MWO8LG0w7TLQ4YmMrMRqCclRcynbkX5DIU\nki49hkxJks7SEQ7yUvg6z4VH2Rt2ATArL2R5/S6uyje50IkumEBgNGMZzVi6mH2axYsyhwdZvOgo\nR5jGnMb1KEcx5qI/D0mXBkOmJElnsIstrA2P8kr4JsfDMdryCK6t38KyvJrZLGx2eVJDIDC2vBbp\ndOZ9sGdUki4CQ6YkSQPo4QRvhOdYGx5hayhWQJyQp7KsfifX51WMpbPJFUqS1JoMmZIk9bGfvbwQ\nnuCF8Djvh/cAuDx/hGX11SzmWld0lSTpDAyZkqRLXibzFt9hbe0RvsPz5FBnVB7LTfV7WJbvZAoz\nm12iJElDhiFTknTJOsphXgnfYm14hO6wHYDpeS7L66u5Ot/MSFeHlSTpnBkyJUmXnD3sYG14hG+H\nb3AsHKGW27iqvpLl+S7msoRwxus/SJKkwRgyJUmXhDo9rONF1tYeYVN4HYDOPImb65/khnw745jY\n5AolSRoeDJmSpGHtIPt5ITzB8+Ex9oe9AMzPS1lev4vIDbT5VihJUqV8Z5UkDTuZzDbe5LnwKK+F\nZ6iHHkbm0Syr38WyfBfTmNPsEiVJGrYMmZKkYeM4R3k1PM3a8Ahvh7cAmJpnsqy+mmvzLYxiTJMr\nlCRp+DNkSpKGvL3s4rnwGC+FJzkSDhJy4Iq8jOX11SxgqQv5SJJ0ERkyJQ0pmcwhDjCWcQRqzS5H\nTZSps56Xea72CG/yCoRMRx7PLfXPcGO+gwlMaXaJkiRdkgyZklpaps5utrElrGML69gSEgfCu4zO\nY5nDYublJczNS5jNZbQzstnl6iI4zPu8GJ7k+fAY74bdAMzJi1heX83SvJx2RjS5QkmSLm1DJmTG\nGKcBzwN3pZTWNbseSRfGCY6zg01sCYmtYR1bWc+RcKixvSOPZ1G+hr3s4s3wbd4M3wagLbczi8uY\nm5cUwZPFjGFcs56GLoCdbGZt+Bqvhqc5EY7TnkdyfX0Vy/JdzGRBs8uTJEmlIREyY4wjgP8EHGx2\nLZKqdYRDbONNtoTElrCO7WykJxxvbJ+UpxHrNzKPIjxOZkZjft377GMr6xuP3cabbK2t51v8LQDT\n8pwidFL0dk5ginPzhpgTHOf18CxrwyNsDxuAok0sq9/Fdfk2xtDR5AolSdKphkTIBH4T+A/Al5pd\niKQP5wD72FoOe90SErvYSg652JgDM5jLvHpkXo7MZTGdTBr0WOOYyFKWszQvhwxHOcx2NrAlrGNr\nGTp317bxPI8BMD5PboTOeXkJXcyh5rzOlvQee3g+PM4L4QkOhQOQA4vztSyrr2YRH3E+riRJLazl\nQ2aM8UeA7pTSV2OMXwK7IaShIpPZy9v95lP2zqEDaMsjmMsS5tWXMC9H5rCI0Yw97+83ijEs5GoW\n5qshQw8neJstbA3riuDJOl6rPc1rPF3sn8cyl0WNIbazWMgI53U2TSaziddYW3uUdbxADpkxuYOP\n1j/Jsnwnk5jW7BIlSdJZCDnnZtdwWjHGNUAu/10HJOC+lNKuQR7S2k9IGsZ6cg/bezaz4cTrbDj+\nOhtPvMGB/F5j+5jQwcL2K1jYvpRF7Vcyt30RI8LFW6Ql50x3fScbTrzOxuNvsOHEG3TXdza2t9PO\n3PZFXN6+lIXtS1nYHumojb9o9V2qDtcP8uyxJ3jyyP9gd307AHPbLue20Z/ghpG3MDKManKFkiQN\nOU3tmGv5kNlXjPFx4AtnWPgnd3cfuFglSWetq6uT4dY2j3OUbWxo9BRu402OhSON7Z15EvNybAxP\nncaclhvm+D7vlcN317E1rGcnm8mh3tjelWeXCwkVz2ECU4fdvM5mtc3dbGNteISXwzc5Ho7Sltu5\nKt/Esrya2Swcdj9nnZ/h+Nqp4cG2qVbW1dXZ1DfRlh8uK6l1HOJAv4V2drKZeuhpbJ+aZxVDX4lD\nJpCNY0K/eZ3HOPKB4Nxd287zPA70Bufe0BmZ5rzOc9LDCRIvsLb2CG+F7wAwIU/hxvpnuD6vogN7\njiVJGuqGVMhMKd3R7BqkS8l77CnnUxahsjtsb2yr5TZmML9cpKe4ZMhwCAgjGc1CrmJhvgoy1Onh\nbd5q9HRuYR2v1Z7hNZ4BYFQec8r1Op3XOZAD7OOFciGfA+FdAC7LV7GivprFXEeNtiZXKEmSqjKk\nQqakCydTp5sdfUJlYn/Y29g+Io/ksnxlMfw1R2ZzOSMZ/nPlarQxi4XMygtZme8lk3mX3Y2f09aw\njg3hZTaEl4v9c9sHrtc5ls4mP4vmyGS2sI7nwiO8EZ6jHnoYlcewon43y/JdTGVms0uUJEkXgCFT\nukT1cIIdbGpc7mMr6zgcTl6Kdmzu5Ip8YxmWIjOYR5svGQQCk5nO5Dyd67gVMhxkf2NeZ++1PrfV\n3uQp/g4ohxGXc1Pn5iVMHALDiD+MYxzhlfAt1oZH2R22AsU1S5fXV/ORfDMjGd3kCiVJ0oXkGaN0\niTjKYbbxZmM+5XY2cCIcb2yfmLtYXL+uMZ9yCjOHdRCqUgfjuYJlXJGXlfM6j37gep0v1B7nhT7z\nOufmxeWCSJFpzB0W8zrfYSfPhUd5KXyDo+EQtdzGlfUVLM+rmUe0PUmSdIkwZErD1Pu81xjOuSWs\n423eIodyNekcmM7ccpGeondtPJObW/AwMpJRXMaVXJavbMzr3MXWRsDfyjperz3L6zxb7J9HM5fF\njSG2xbzOoTEUuU6d9bzI2tqjbAyvAjAuT+Sm+t3cmO+gk0lNrlCSJF1shkxpGDg5TzA1FunZG05e\nSrYttxeL0zQW6VnEaDqaWPGlpUYbM1nAzLyAm/I9jd/X1rCOLeUw2w3hFTaEV4r9c7H/vMa8ziUt\nN6/zIPt5Mazh+fAY74V3AJiXI8vzaq7INzq0WpKkS5hnAdIQVKfOLraUcwATW1nH++G9xvZReQyL\n8jXMy7Fc8fQy2l3xtGX0ndd5bb95nesbQ2x3spnttQ08xf8AYGqeWfR0lsOZJ9LVlOGn29nA2vAI\nr4Vn6AknGJFHcWP9Dpbl1Uxn7kWvR5IktR5DpjQEHOcY29lYDn1NbGU9x8KRxvZxeSJX1leUAcRr\nNw5FxbzOG7ki3wgZjnP0A9frfLG2hhdZAxS/85PX61zCdOZdsN/5cY7xWniG58Ij7AibAJiSZ7Cs\nvppr8y2MZuwF+b6SJGloMmRKLegwB/utVrqDjdRDT2P7lDyzMZ9yXo5N69XShTNikHmdfYfYnjqv\ncw6LGtfrnMPlH3pe57t0lwv5rOFwOEjIgZhvYFl9NQu5kuAHGZIkaQCGTKkFvMc7ZXgo5lPuDtsa\n20KuMZP5zK0vYX6OzGUJHYxvYrVqhr7zOldwNzln9tHdWEhoS1jHxvBqY/Gd3nmdfa/XeTbtJlNn\nA6+ytvYI6/k2hMzY3MnH6p9mWb6DCUy90E9VkiQNcYZM6SLLZPawo1ykpwgH74U9je3teSQL8pWN\nRV/msMjrCuoDAoFJTGNSnsa13NKY17mtnNe5pc+8zqfLeZ1T8syiXZUrCk9iWqMH/DAHeSk8yfPh\nscaiUbPz5Syvr+bKvIJ2RjTtuUqSpKEl5JybXUPVcnf3gWbXIPWzi63sGreONw69whbWcTi839g2\nJo9rnPTPy5GZzHdlTlXiOEfZzsbGYkIfnMs7gbksoXPUOF44+k1OhGO05xFcnVeyLK9mFpc1sXqp\n0NXVie/rakW2TbWyrq7Ops6j8kxWukB6rx/4dO1h3grfgcNAgAl5Kovq1zRWCZ3KTOe26YIYwSgW\nsJQFeWk5r7PObrb2G2L7RlgLx2AiXSyr38l1+baWu1yKJEkaWgyZUsWOcYSXwpM8E77Ku2E3AAvz\n1dw67uNM3D+PCUxpcoW6VNWoMYP5zMjzWcHHy3mdexgx8Rhj9810RWJJklQJQ6ZUkX3s4dnwNV4M\nazgaDtGWR3B9fRU35XuYxhy6RnXSjcNq1DqKeZ1ddI2wbUqSpOoYMqUPaSvreSY8zBvhOXKo05En\n8NH657gx3+kqsJIkSbrkGDKl81CnhzfCWp4OD7M9bABgep7Hyvo9XJVXuhKnJEmSLlmGTOkcHOYg\nL4QnWBu+xv6wF3JgSb6elfV7mc8VjctBSJIkSZcqQ6Z0Ft7hbZ4NX+Wl8HWOh6OMyKNYXl/Ninw3\nU5jR7PIkSZKklmHIlAaRyWzmDZ6pPcw6XoKQGZ8ns6r+Wa7PtzOGjmaXKEmSJLUcQ6Z0ihMc59Xw\nNM+Eh9kVtgAwO1/Oyvq9LM3LqNHW5AolSZKk1mXIlEoH2c9z4TGeC49yMLxHyDWurK9gZb6XOSxq\ndnmSJEnSkGDI1CVvN9t4OnyFV8JT9ITjjMpj+Wj9E6zIH2cCU5tdniRJkjSkGDJ1ScrUeZNXeLr2\nFTaF1wCYnKezon431+VbGcnoJlcoSZIkDU2GTF1SjnGUl8M3eSY8zDthJwDz81JW1u9hMddRo9bk\nCiVJkqShzZCpS8J+9rI2PMLz4XGOhIPUchvX1m/hpnwPM5jf7PIkSZKkYcOQqWFtBxt5OjzM6+FZ\n6qGHsbmTW+v3sTzfxTgmNrs8SZIkadgxZGrYqVMn8TxP177C1rAegK48m5X1e7k6f5QRjGxyhZIk\nSdLwZcjUsHGUw7wY1vBs+Cr7wh4AFuVruKl+Lwu5ikBocoWSJEnS8GfI1JD3Lt08G77Ki2ENx8IR\n2vNIbqzfwYp8N13MbnZ5kiRJ0iXFkKkhKZPZwjqeqX2FxAvkkBmXJ/Kx+qe4Md/BWDqbXaIkSZJ0\nSTJkakjp4QSvh2d5OnyFnWEzADPzAlbW7+XKvII2m7QkSZLUVJ6Ra0g4xAGeD4/zXHiUA+FdyIEr\n8o3cVL+XeSxxvqUkSZLUIgyZaml72MEz4WG+Hb7JiXCMkXk0N9XvYUX+OJOY1uzyJEmSJJ3CkKmW\nk8ls5FVwOfc4AAAb6ElEQVSeqT3Mm+FlACbmqayo3811+TZGM7bJFUqSJEkajCFTLeM4x3glfItn\nwsN0h+0AzM2LWVm/l8gN1GhrcoWSJEmSzsSQqaZ7n32sDY/yfHiMQ+EAtdzG1fWPclO+h9ksbHZ5\nkiRJks6BIVNN8zZv8Ux4mFfD0/SEE4zOHXys/imW59WMZ3Kzy5MkSZJ0HgyZuqgyddbxEk/XHuat\n8AYAU/IMbqrfwzX5FkYyqskVSpIkSfowDJm6KI5xhJfC13k2fJW9YRcAl+WrWFm/l0V8hECtyRVK\nkiRJqoIhUxfUe+zh2fA1XghrOBoO0ZZHcF39Nm7K9zCduc0uT5IkSVLFDJm6ILbxJk+Hr/BGeI4c\n6nTk8aysf45l+U46GN/s8iRJkiRdIIZMVaZOD2+EtTwdHmZ72ADA9DyXm+r3cnVeSTsjmlyhJEmS\npAvNkKkP7QgHeSE8wbPha+wPewFYnK9jZf1eFrCUQGhyhZIkSZIulmEXMv/zgV+D0M4oRjOSMYxi\nDCMZzShGMyoXXxe3x/TZZzQ12ppd+pCzl108Ex7mpfB1joejjMgjWV5fzYr8caYws9nlSZIkSWqC\nYRcyXzn+LOezUGl7HlmGztH9wufI3D+M9guoecwpgbV4bBsjhm3vXSazmTd4pvYw63gJQmZ8nsxt\n9c9yQ76dMXQ0u0RJkiRJTTTsQuavT/xTdryzh2Mc4SiHOcphjnGEY+EIR8v7jnGEYxwubofe2737\nH+Eg+zkWjhQHPI+sWMttpwTTPiE0n/y6t6e1CKwD9bCOYQQjWyKwnuA4r4WneSY8zNthCwCz8kJW\n1u9laV5G2/BrSpIkSZLOw7BLBh21TiYOtCEP8oBB7s/UOcbRRijtDaAnA+vhftuOcYSj4Uj/2xxm\nP3s5ymFyKL/ROebFkEO/Ib79elrzyfv697D23t+/93Uko6mdYzfvQfbzXHiM58KjHAzvEXLgyvoK\nbsr3MJfF5/ZkJEmSJA17wy5kViVQK0PbmA9uPOfAmjnBsX49qUd7e1ND39v9A2oRWk9uP8h+3mU3\nPeFEb5HnbEQe2Qif/QJq/mAg7WY7L4dv0ROOMyqPYWX9E6zIH2ciU8/9G0uSJEm6JBgyL4JAYASj\nGMEoxjGh/8bBAutptvVwok/P6uGT4TUcOaXX9WRAHWhY8AHe5Xg41lvkgCblaayo3811+daBA7ck\nSZIk9WHIHILaaGcsnYyls/+G8wisdXpO6Unt7U09zCjGsIArz3mIrSRJkqRLlyHzElejjdF0MNpV\nYSVJkiRVwC4qSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqkzL\nX8IkxtgG/AGwhOJqj19MKb3W3KokSZIkSQMZCj2ZnwLqKaVbgJ8DfqXJ9UiSJEmSBtHyITOl9GXg\nC+XNBcC7zatGkiRJknQ6LT9cFiCl1BNj/GPgfuB7mlyOJEmSJGkQLd+T2Sul9CMU8zL/IMY4psnl\nSJIkSZIG0PI9mTHGvw/MSSn9GnAYqJf/BtXV1XkxSpPOmW1Trcq2qVZm+1Srsm1KAws552bXcFpl\nr+UfAzOAEcCvpZT+5jQPyd3dBy5GadI56erqxLapVmTbVCuzfapV2TbVyrq6OkMzv3/L92SmlA4D\n39vsOiRJkiRJZzZk5mRKkiRJklqfIVOSJEmSVBlDpiRJkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJ\nkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5IkSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIk\nSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmS\nJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJ\nkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5Ik\nSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmS\nJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJ\nkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIk\nSZIqY8iUJEmSJFXGkClJkiRJqowhU5IkSZJUmfZmF3AmMcYRwH8F5gOjgH+dUvqb5lYlSZIkSRrI\nUOjJ/EGgO6V0G3Av8G+bXI8kSZIkaRAt35MJ/BXw/5Zf14ATTaxFkiRJknQaLR8yU0oHAWKMnRSB\n8182tyJJkiRJ0mBCzrnZNZxRjHEu8ADw71JKf3yG3Vv/CUmSJEnShROa+s1bPWTGGKcDTwA/nlJ6\n/Cwekru7D1zYoqTz0NXViW1Trci2qVZm+1Srsm2qlXV1dTY1ZLb8cFngZ4EJwC/EGH+hvO8TKaUj\nTaxJkiRJkjSAlg+ZKaWfAn6q2XVIkiRJks5sKFzCRJIkSZI0RBgyJUmSJEmVMWRKkiRJkipjyJQk\nSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqS\nJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJ\nkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5IkSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIk\nSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmS\nJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJ\nkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5Ik\nSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmS\nJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKDKmQGWO8Kcb4eLPrkCRJkiQNrL3Z\nBZytGONPAz8EvN/sWiRJkiRJAxtKPZlvAp8DQrMLkSRJkiQNbMiEzJTSA8CJZtchSZIkSRrckBku\ney66ujqbXYI0INumWpVtU63M9qlWZduUBjYsQ2Z394FmlyB9QFdXp21TLcm2qVZm+1Srsm2qlTX7\nA5AhM1y2j9zsAiRJkiRJAxtSPZkppc3Azc2uQ5IkSZI0sKHYkylJkiRJalGGTEmSJElSZQyZkiRJ\nkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIk\nSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmSJFXGkClJkiRJqowhU5IkSZJUGUOmJEmS\nJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJ\nklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIkSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIk\nSaqMIVOSJEmSVBlDpiRJkiSpMoZMSZIkSVJlDJmSJEmSpMoYMiVJkiRJlTFkSpIkSZIqY8iUJEmS\nJFXGkClJkiRJqowhU5IkSZJUGUOmJEmSJKkyhkxJkiRJUmUMmZIkSZKkyhgyJUmSJEmVMWRKkiRJ\nkipjyJQkSZIkVcaQKUmSJEmqjCFTkiRJklQZQ6YkSZIkqTKGTEmSJElSZQyZkiRJkqTKGDIlSZIk\nSZUxZEqSJEmSKmPIlCRJkiRVxpApSZIkSaqMIVOSJEmSVBlDpiRJkiSpMu3NLuBMYow14N8D1wBH\ngX+YUtrQ3KokSZIkSQMZCj2ZnwVGppRuBv4F8NtNrkeSJEmSNIihEDI/BnwFIKX0DLCsueVIkiRJ\nkgYzFELmeGB/n9s95RBaSZIkSVKLafk5mRQBs7PP7VpKqX6a/UNXV+dpNkvNY9tUq7JtqpXZPtWq\nbJvSwIZCj+A3gU8CxBhXAi83txxJkiRJ0mCGQk/mg8DHY4zfLG9/vpnFSJIkSZIGF3LOza5BkiRJ\nkjRMDIXhspIkSZKkIcKQKUmSJEmqjCFTkiRJklSZobDwjyQNKzHGq4DfAMYC44C/Syn9YlOLOksx\nxh8BYkrpSx/iGP8U+N7y5t+llH65z7b7ge9JKf3ghypUZy3GeDvwl8BrQABGAf9LSumlGOMTwBdS\nSukcjrcZWJJSOtbnvr8AfjildPwcjvN2SmnGKfd9P/BTwAngFeDHU0qnXVyifH5fSCl9/9l+7/Jx\n1wG/B/QAR8v6d8cYPwH8Qrnb2pTSPzmX46o1DPQ6DKwB/tG5tpXyeFcDk1JKXz+f9q5LQ4zxt4Ab\ngRkUbW8j0J1S+p/O4rELKdrpU8BfU7Tf3wduTyl991k8fgXwryg6GTuBv0wp/U6M8R5gXkrpD87x\nuTzBad4fTtuTGWO8vfxD6Xvfr8cY/8G5FHExxBh/Mcb4hbPY79+czX599n/7Q9R0f4zxz/rcvjXG\n+HSM8akY46+f73FVGE7tM8Z4ZYzxG+W/P4oxtp3lcatsn/fHGN+MMT5e/rvtfI+twcUYJwJ/AfxU\nSulOYCXwkXN5XWqyD7VaXPkm+QPAR1NKK4G7y5MzYoy/C/wqRdDRxZOBR1JKd6SUbqcIUP+qz7Zz\n/Z1/YP+U0vefxwl3v+PEGMeUdd2eUroFmAB86nzqOUv/F/ATKaU7gAeAn4kxjgP+T+C7UkofBbbH\nGLvO8/hqksFeh4ElH+Kw3wNcCefd3nUJSCn98/I15deBPytfd88YMEu3AP89pfR54NPA/5ZS+v2z\nCZil3wd+MqX08fJY3xdjvDal9PC5BszSad8fztSTOdADW3U52jN9ktkF/CmwGHijquOe5vv9LnA3\n8GKfu/8N8N0ppbdijI/FGK9LKb10PscXMIzaJ/ArwL9IKX0jxvhHFC8eD1Vw3AEN0j5vAH46pfTA\n+RxTZ+0+4NGU0gaAlFI9xvjDwLFTe1xijDtTSjNjjH8MTAamAL8JfImiZ+U/A1uBf03R27IB+ALw\nQxTXFx4DXA78RkrpT2KMN1G8DtWA7RSXhHoBWJxSyjHG3wCeSyn91dk8kRjjr1F8IjsF+HZK6Udj\njL8ILACmAfOBf5pS+mqfh20B7unT+zQCOFJ+/U2Ky1YNlcA9XAT6B/vJwK6+O8QY5wD/HhgNzAR+\nLqX05RjjpyhCaaBoS1/sPWaM8YvAx4HvB9ZRnMAvAX4baAOmUvSYPhVj/LHysW3AX/ft2Y8x/iow\nHvgnwM0ppd720g4cPsvn13usnwDuBzqAPeXXP8gAfy/A96WUej/IG1F+r5spelB/p/zA5L+klLrP\noga1lsFeh28G/ucY499RvIb9TUrpl2KMqyjaeY2i1/MHgOPA31C0o8eBfwAcjTG+QDEy4ArgP1G8\nvi2g+Lv5kZTSi2V7/8fAXuAY8N/KNqdLS9/Xpj+meO2dDHyG4sOsORTt5q8p3u9/FhgTY9wCfAK4\nIca4B3gopTRjgPf4H+zzegnF6/pPlueZ3wY+llI63jtCCfiPFG13C0Wb/X+Aq4Hrgb9NKf3Lc3ly\nZwqZA32a3PcH8tvAx8qbf55S+r3yh3SM4uRiVFngp4F5wH0ppY3licktFG8mv0Px5vMrKaVPxxi/\nD/hSSunaGOPHgB8Gfhr4M4qu3XaKN7fHY4yvAqn8ft8pa1pU7vtjKaVX+9TdAfwfFL+Uc/6U/DQv\nMH9B8cu4HHg2pfTj5UMGOllaUb6QjaP4BPbAudahfoZT+/zusm2MpBhCse9cfhAVtc8bgetjjP8r\n8CzwMymlnnOpQ2dlJrCp7x0ppYMAMcbBPjTIFCdEv1sG0VEppZtijIGibX0spbQnxvjLwI9Q/O7H\np5TuLdvc3wB/QnHC870ppRRj/DxFu/gGcG+M8avAvcBZvYnEGDuBvSmlu2OMNeDVGOOsstYjKaVP\nxhhXA/8MaITMlNIJYG9Z+28CL6SU3iy3/WX5/HTx3RljfJzidfFaipPwXoHiBOS3U0prYowfBX4p\nxvjfKT4ZX162v39OcVIE8JPAdRRDn3PZtgNFT88/Sym9Wg59/XyM8U3gZ4CPpJSOxhh/NcbYARBj\n/E2gnlL6ifK4u8v7fxLoSCk9crZPsGxzk4HVZU1fAZZTtNkP/L30BswY480UgeBWir+RO8qf0UHg\n6zHGp1JK68+2DrWEAV+HY4zHKT5IuY/i/XwL8EsU7faHUko7Y4xfAv4exXv5dOD6lNKJsn3tTCmt\njTH2HjYDm1NKX4wx/kPgH8UYf47ivOFaivODx2ndD8h18fR9n58PPJVS+sMY42hga0rp58vz01ie\nz14P/EVK6ek+5w593+N/FFhK/86EH6SYbvAfKN7//7x83e7b/i4DVlMM5d0EzKL4gO0tzvL8oNfZ\nLPxzZ5/hc49TfCJJ+enlgnK40y3AD5RDnjKwKaV0D0WP4YKU0ncB/x/w6VjMZViQUroVuLMs+C1g\nfnmC/QmgJ8Y4jSLJPwD8PPBwSmkVxR/2H5a1dQC/3Gfs/BUUf/Q/cMoJPCmlzSmlZ8/lh3OK3heY\n3mEzf698rouBHwVWAJ8s6yal9JenHqAMESspPgXdSfEpgz6c4dI+6zHGecCrFL1CL5/jz+FDt0/g\naxRDw26jCKpfHGAffXhvAXP73hFjvCzGeOsA+/b9ICUN8HUXxcnSX5Xt/26KD1AAekdJbKM4aQKY\nnlIxdyKl9EcppReBP6AIpvcCXytDYD8xxloZKntlijed6THGP6f49HMcRW8PnHxT6/u9+x5vNMXf\nQgfw46duV1M8Vg7bupniU+v/Vv6eoPh9vw18Icb4pxSvDe0UPZHvppT2AKSUfiultLV8zGpgYuo/\nXzIDO4CfLz/w+x6KNrMQeDWldLQ8zs+WH7xMpxjCOK73AGVb/C3gLmDQIWIxxhBjHN/3e5e1HAf+\nIsb4XygCcW+bHejvhRjj91KckH0ypfQORa/V2pTS7rLGJynCtIaWAV+Hgdso2uLxlNJhirm/ULTb\n3yt7gO7gZCfNpoFeM0/R+3q4laJtLQJeTykdSSnVgW/hFAEVet/b3wWWxxj/b4rOjlHl/aeOOjlV\n3/f4/1q+xwMQYxwF/3975xaqRRXF8Z+XLvYQpoF5qxRyCRqUoYVP+SAYkRkURUgpitGVsqLerLAs\nqETwIQos0wIpE8vbQbPU1BOZlyR1mV3owdASrTRM0tPD2uM3Z5zRo37H2/n/Xs58M7P3nvm+tdde\ne+2112GQu09295sJ+/BqYEKhjp/c/W/gT2CXu+9LuvmkHSEtmWRmA8+wZMB+mM73B1alF/kPaCTF\nohMhMxCrMVvS8V6icw0EbkoG0WKio14LNBBGfS/C+BhOeA0/T22tTG3tBP7KjGWaG14jiHCXIy14\nr0rMrEvuY/alVimYHe5+ICmK3ygxqPK4e6O79yGUzvOn85wCuIDk091/dfd+hCfqzaoXbkX5nOHu\nv6Tj+YShKerPAmLlsC+AmV1E/N4DiLCq7un8NcSqS0ZewWcy9AdhFI/02h6PZSX3Z+xMKzWY2bNm\nNsrdVxMezXHUHCRFbidWrAB6EiE3twG93P1+whnTiRYYSsnbPx/Y6O4P+wmStoizwm6ay0874CXg\nfXd/APiSsB92A53N7Ao4mvNgcCozEthrzfcatwOmAZPcfQzhcG1HhHn3T448zGxOWhXf5e4jgAEW\niSkg9OMlwF3ePAysyEAixAzCE7/LzK4nIlbuI0Jv21OT2WPk0MxGEyuYt+Z04wZgoJl1NbOOxF6+\n74/zHOLcpEwPvwH8TrnufJsIdR1LjLeZ/Zwfz48QEVBVZLK2g5D3S1MUyJCKNkXbI5ODMcA+dx9N\n2AeXtbD8MWN8oe5ZZnYdgLvvJZwtRT1aN1k8nX9hspVYIco651CgLFykaHRsA75IBtFw4CNigJlH\nTLo2EaFVjwM/pAnCVsK7hJn1BDoDe1J9+Q4+FZgIzEwd91T5LnX+HtT2pVQpmBb9GMmruspisznA\nfmIPlWgdziv5NLNPM8XAiWWjVeQT2JSeH2IVYl1LyoqTI3kIHwTeSc6MtcAGd3+L+M73mVkj8AKR\ndS6jKfe3KdV1hAh9WWRmqwmP5JbC/fnjh4AZFhnhbgQWpvMfEB7QrWZ2g5lNLTx2A3ClmX1FOFtm\nESHVfc1sOTFx+Jow5qvazhhF9JcRuSiEWwr3y+A6szRRiwpZRvzeE3OTuCZCF75uZosJ73eX5CB4\nBFhoZquA9u7+Ta7eJ4BncroNYDax8r6I0FPd00roa8AKM1tD9Ied1ORgHDDdzAYRkRkDgeXpee80\ns25WSALn7puBn1O/eBSYThj3B8xsZXqO9VTIbNLR04hV1E9SW5PcfTexJ7qBcF7OdfctiPOKCj28\nkRjPy/TXbCI0egHh3OteuA7wLfCYRch/WR1NxIr6HkLeVxHO7E7ECrtoexTHuuzzMmKMXErYnuus\nth3lePlIqsZ4PLJ935uuN5rZ2nTp3UIdVeP3SY/LLUn8U/oy7r7QIrvnGuBiYtPyBos49MoHdPfP\nUrmVJOXt7vuTUdUPeNXdN5tZb2BKKvcK8aXcTXTGCe5+2Er2L7n7snTfc7nyZe8FHE2r/qS755Mc\nTCY6fwdqacozBbOTmIiUKZiydjJjsMlib8liM/uXmAiMP05ZcWIuJPmcArxnZoeIfT7j4YzL5zhg\nrpkdJMJ2TyXTmGgB7r6eCPcrnj9MTMKK58fmjlcQafazz0uJUOc8M3PXDxLhiLj7OpJDpEAHar/3\ndkIG8+0fojyL55CSc2ty5bYRk9J8XfOIflJK8f1E65O+824V14alw+3EHvaMF9P1JcCSQpk+6fAQ\nEZJFWvU75O5TCYdbsZ2Z5OQ2neuR/v6Y1UPJSpFFNu5jtp/k+02OY/pdoczR/kJsXSi7Zw4w53j1\niHOfKj1MrNRn92Qy+HRFNUNz9y4i/r0E1GQor7sbgIYkrz3cfXBy8K4gQmlFG8ILiZ4K4/wWysPw\nZ1bcn8lp1Rif3beWiMKrrJck0wVdeLSNQn3DiufytGtqatsOYzN7mUjq8s/ZfhYhikg+RWtjsTfu\nKuAOjyxzlxMOFyUmE3XBzD4mZOqeVqq/I9C14IwT4pwlje0jCEdMo7s/dZYfSYi6o0mmWW+vJSoQ\n4pxC8imEEEIIIc432vwkUwghhBBCCCFE/Tid5DhCCCGEEEIIIUQzNMkUQgghhBBCCFE3NMkUQggh\nhBBCCFE3NMkUQgghhBBCCFE3NMkUQgghhBBCCFE3/ge7Gdg0cG4gpAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Mean Difficulty for Rails Lectures per Day" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data = pd.read_excel(\"cohort_3_rails.xls\", skip_footer=3, header=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 10 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_mean_day = ruby_data[::1].mean()\n", + "ruby_mean = ruby_mean_day.dropna()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 11 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "plt.title('Mean Difficulty for Rails Lectures per Day')\n", + "ruby_mean.plot(color='red', figsize=(17,7), ylim=(0, 6))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 12, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA88AAAGyCAYAAADaqPb1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX+x/HP1Ex6Il0BsV4Bu64NEFC6bXVdECyIFVCx\nrO5Pd9VddV3dVdeCCxZQsNDWikq1I/aGCnjEQlEBEUhPpt7fH3cIAYGhJLmZ5P16nnlI5t65883k\ncDOfOeee47FtWwAAAAAAYOu8bhcAAAAAAEBDR3gGAAAAACAFwjMAAAAAACkQngEAAAAASIHwDAAA\nAABACoRnAAAAAABS8LtdAACg/lmW1UHS95LmGWO6b7btcUlDJTU3xqyr4zrelNReUnHyrqCktyT9\n2RhTZlnWkZL+zxjzR8uy2kmaKSkq6UpJd0jKS/57mTGmyy7UMNoY86xlWY9KGmuM+XQ7H+uV9Lyk\nAyTdb4wZsws11HwdfJIyJP3DGPNkisfeImmJMeYpy7IS2oHfm2VZSyWdsb0/b4pj/U7SBcaYEbt6\nLLdZlvV3SSMl/ZS8KyDn/8ufjDFL3KoLAOAuwjMANF1VkvazLKu9MWa5JFmWlS2pqyS7nmqwJV1r\njHku+fx+SQ9ImiTpVGPMx5L+mNy3p6SVxpjelmUdL6mlMWa/5LZJu1jDhp+3l6SHduCxbSX1kZRl\njNmV12yT10GSLMs6QtJ8y7KeM8aUb+2Bxpi/7eLz1pbOcl6PxsCWNMUYM2rDHZZlnSPpNcuyOhtj\nSt0rDQDgFsIzADRdcUlTJZ0tp/dWks6Q9IKkP23YybKsUyT9VU6vcIWckPe+ZVmtJD0sqaWk1pKW\nSRpojFmT7NF8XNKJcnpUpxpj/m8rdXg2fGGMiVmWdY2kVZZlWZLaSBot6QpJt0nKtyzrdUntJO1h\nWdankoZI+tgYk5MM3/+WdJKkmKR35fQg/lVSM2PMFcmf6e81v5fksSzrH5J2l/SUZVmXSnpZUltj\nTIllWR5JRtIfjDFfJo+RK2mWnF7JTy3L+oOkPZLPnyUpIulGY8xsy7LOl3Rh8v4iY8yJ23odkvaR\nVCYpnOzhvlfS0ZJyk/teZIx517KsCZK+NMbcs+GBlmW1lvSEpGbJu14xxty8ldd/iyzLulDSCDmX\neK2VdLkxxliWlSPnd3KcnNf4BUljJd0qKc+yrPHJ537QGHNQ8lg95PTuH5R87Y+V02YWGGPOsyzr\nr3LanlfSUkkjjTErLcs6Q87vLiGnvV5njJm3WZ3ny2nDCTnh/WdJ5yUfny/pfkkHyvk9vZY8Rtyy\nrHCy9kMkDdlC7/smv49kz/65ctrbw5ZlXSDpEjn/L3aTdKcx5iHLsuZKmmaMeTRZ34a2d80OvPwA\ngAaIa54BoGl7UtI5Nb4/T9KEDd9YlrWfpNsl9TfGHC7pUknPWZaVJWmQpPnGmOOMMXvLCdbnJh9q\nS8o2xhwvJ2RdYVnWnlupYZPeT2NMlaRvJB1U4743Jd0sZ5j5CZIukvRdsqaqGscYKelwSQfLCUy5\nyTo372G1N7vPNsbcKCd4nW2MeVtO0Do7ub2npDUbgnOyplJJ/SVVGmMOkzPk+n+SRhljDpEz9P2p\n5BB5Seokqfs2gvNdlmV9ZlnWD5ZlrZb0e0knGmNickJza2PMMcaYznLC6fVb+Vk8ki5Ovj5HSOom\nZ4RB7haed4ssy+oupy10S77Gd0na0Ct+q5zAeICkQyV1kRP0b5Lz+7lQv/0gYHPtJB2WDM7nyfld\nHZV8HWdKGpfc79+SRhhjfpc8fvctHs0J41ckX5uP5YxekJwPHD42xhwpp120kLQhxAYkTTfGHLAD\nw9YXSDooOULjIm38f3FWslZJejC5bcOw/gvlfLgAAEhz9DwDQBNmjPnUsqyEZVmHS1ojKdcYs9Dp\n9JUk9ZbT+/t6jfvikvYxxjxgWVa3ZE/xfnIC0Ps1Dv9i8jl+tizrFzm9c8u2szRb0uZDlT1b+bqm\nXpKeMMaEk9+fJUmWZe3M0Ob/yglEY+V8aLClAFSzjqMlfWuM+UiSjDGLLMuaL6mHnJ/nC2NM2Vae\nq3rYtmVZzSXNkBPWFySP9Z5lWWstyxohae/kMUu2cayZkmZYltVe0quSrt/BocYnSdpX0rs1fu+F\nlmUVyhlNcHVymHo0WYssy9prB47/vjEmkfz6ZEm/k/Rx8rl8kjKT26ZIesGyrFckzZUT4rfkVWPM\nN8mvx0n6rOaxk73oSh43UeNxm/Rib6dyY0y5ZVknSzrFsqx95XyIkJPc/rKkByzLOljOSITvuU4a\nABoHep4BABt6n8+R06NZk1fSa8aYwzbc5PQ0LrQs61+SbpG0Ws7w7TnaNExW1vjaVureSElSsle7\no6SvduJniW52rBbJIcybP3/GdhzrNUlZlmWdKKf3dlqK/bf0N9WnjR9Uby04b+CRJGPMr3J6yy+y\nLOtMSbIs6yRJr8gJfi/IuS57q3/Dk9eK7yXpEUkdJH1oWdaxKZ6/Jq+kJ2v8zg+XdIwxZr2codrV\nLMvaw7Ks3TZ7/Oavd3Cz7TU/GPHKGfK84bmOlHR88ue4UU57+1jS+ZLeSw6h31x8s+PFa3x9Zo1j\nHyNpVI19U/1ONvc7SV9altVWTi90OzkB/MYNOxhj4nJ+PxdKGqYdu4YeANCAEZ4BAE9JGignsG0+\n8dYbkvokrz+WZVn9JH0uKSRnoqz7jDFPy+m17i0nLO6o6jBkWVampPskzTDGrNiJY70qaYhlWcHk\nkNmHJA1O1ndE8jmyk7VvSUzJoJfsWR0jpyfzaWNMJMVzv+8c3vpd8nk6ywndb2r7PjioHnptjPlB\nznD5e5MfJvSS9JIx5mFJn0g6XRtf682P7bEs605JNxljXpR0laSFckYHbMmWapsjaXDygwfJGQY+\nJ/n1q5KGWpblsSwrQ9KzcsJuVM5QaMl5vdsnP7zwyBmCvjWzJV1cY1j53yVNtCzLZ1nWD3KG/z8s\n6TI5H6psadRcT8uy9kh+PVzS9BrHviZZa1DOzOgjt1HLBr95TZK91x3kfIhypKRfjDG3G2PmSjol\nuc+Gx42T8zs6PPmcAIBGgPAMAE2XLTnDqiUtkvSNMaZos20L5UyKNMWyrM/lTNp1ijGmQs61r3db\nlvW+nCHNz8gZ6rujNlzr+4mcAFoi53rhTerUFq5T3sLXG8LlJ5K+kHMN8/2Snpa0xrKsJXJ6cOdv\npZYXJE21LKtX8vsn5ExC9fA26t/wWv0qZ2bw0ZZlfZF8zvONMd9uofbtcbec68hvlPMhQHfLsj6T\nM6R7rqQOybC2+etgy7nW91DLsr6U9JGcZZYmb+V53rYsq7TGbbgxZo6kf0maa1nWAjmjEk5P7n+L\nnMnQFkj6VM5kZC9Iek/SAZZlPWuMWSTnNfs4ef/P2vrvcZycoc7vW5b1lZwJvIYme3CvkjQp2Tam\nSRpmjNlkdEHSj5ImWJa1SE7AvSp5/yhJ2XLawhdyRjNsuDZ5W78PW9KgZLv8NNn2e0vqkfwQZbak\nHy3LMpZlzZMUlrRSyfZvjFkj53WfnPw5AACNgMe262s1EgAA0otlWWdJOtcYc5LbtWDLkrNtDzLG\n9He7lg2S161/KGfCtZ9S7Q8ASA8pJwyzLOsGOcORAnKWnZhY51UBAOAyy7LelDM78x9cLgXbtjO9\n+nXGsqyL5Qy5v53gDACNyzZ7npPrMl5jjDk1eY3Yn40xOzNjKQAAAAAAaStVz3MfObNKviApT9J1\ndV8SAAAAAAANS6rw3ELOMgwny1lXcrqkA+q6KAAAAAAAGpJU4flXSYuNMTFJ31iWVWVZVvPkjKK/\nYdu27fFs1zKeAAAAAAA0NFsNtKnC8zuSrpT0H8uydpez3MParT6Lx6M1a0p3qkLADS1a5NJmkTZo\nr0g3tFmkE9or0g1ttm60aJG71W3bXOfZGPOKpM8sy/pQzpDtkcaYBjOjJQAAAAAA9SHlUlXGmP+r\nj0IAAAAAAGiottnzDAAAAAAACM8AAAAAAKREeAYAAAAAIAXCMwAAAAAAKRCeAQAAAABIgfAMAAAA\nAEAKhGcAAAAAAFIgPAMAAAAAkALhGQAAAACAFAjPAAAAAACkQHgGAAAAACAFwjMAAAAAACkQngEA\nAAAASIHwDAAAAABACoRnAAAAAABSIDwDAAAAAJAC4RkAAAAAgBQIzwAAAAAApEB4BgAAAAAgBcIz\nAAAAAAApEJ4BAAAAAEiB8AwAAAAAQAqEZwAAAAAAUiA8AwAAAACQAuEZAAAAAIAUCM8AAAAAAKRA\neAYAAAAAIAXCMwAAAAAAKRCeAQAAAABIgfAMAAAAAEAKhGcAAAAAAFIgPAMAAAAAkALhGQAAAACA\nFAjPAAAAAACkQHgGAAAAACAFwjMAAAAAACkQngEAAAAASIHwDAAAAABACoRnAAAAAABSIDwDAAAA\nAJAC4RkAAAAAgBQIzwAAAAAApEB4BgAAAAAgBcIzAAAAAAApEJ4BAAAAAEiB8AwAAAAAQAqEZwAA\nAAAAUiA8AwAAAACQAuEZAAAAAIAUCM8AAAAAAKRAeAYAAAAAIAXCMwAAAAAAKRCeAQAAAABIgfAM\nAAAAAEAKhGcAAAAAAFIgPAMAAAAAkALhGQAAAACAFPypdrAs61NJxclvvzfGXFi3JQEAAAAA0LBs\nMzxblhWSJGNMz/opBwAAAACAhidVz/MhkrIsy5qd3PcvxpgP6r4sAAAAAAAajlTXPJdLussY01fS\ncElPW5bFddIAAAAAgCbFY9v2VjdalhWU5DXGVCW//0DSGcaYn7bykK0fDAAAAACAhs2ztQ2phm0P\nk3SwpMssy9pdUp6kldt6wJo1pTtcHeCWFi1yabNIG7RXpBvaLNIJ7RXphjZbN1q0yN3qtlThebyk\nxy3Lejv5/TBjTKK2CgMAAAAAIB1sMzwbY2KSzq2nWgAAAAAAaJCY/AsAAAAAgBQIzwAAAAAApEB4\nBgAAAAAgBcIzAAAAAAApEJ4BAAAAAEiB8AwAAAAAQAqEZwAAAAAAUiA8AwAAAACQAuEZAAAAAIAU\nCM8AAAAAAKRAeAYAAAAAIAXCMwAAAAAAKRCeAQAAAABIgfAMAAAAAEAKhGcAAAAAAFIgPAMAAAAA\nkALhGQAAAACAFAjPAAAAAACkQHgGAAAAACAFwjMAAAAAACkQngEAAAAASIHwDAAAAABACoRnAAAA\nAABSIDwDAAAAAJAC4RkAAAAAgBQIzwAAAAAApEB4BgAAAAAgBcIzAAAAAAApEJ4BAAAAAEiB8AwA\nAAAAQAqEZwAAAABA05ZIyP/px9vcxV9PpQAAAAAA0KD4vl2ijGmTFfrfFPl++lGy7a3uS3gGAAAA\nADQZnqL1ynj+WYWmTVbgk48kSYncPFWeM1SZ23gc4RkAAAAA0LjFYgq+8aoypk5WxqxX5IlEZHu9\nivQ8UVWDhijc7yQpK4vwDAAAAABoenwLv1Jo6iSFnp0m75pfJEkx6wBVDRyi8JkDlWiz+3Yfi/AM\nAAAAAGg0PGvWKPTcNGVMnazAV19IkhKFhaq88BJVDRqi2CGHSR7PDh+X8AwAAAAASG/hsIJzZik0\nbZKCr82VJxaT7fcr3G+AqgYOUaR3XykjY5eegvAMAAAAAEg/ti3/Z58oNHWSMp5/Rt6iIklS9KBD\nFB40WFVnDJTdvHmtPR3hGQAAAACQNrw//6SMZ6YqNHWS/Eu+kSTFW7ZSxchRqho4WPFOnevkeQnP\nAAAAAICGraJCGTNeUmjqJAXeflMe25adkaGq085QeNBgRXqcKPnrNt4SngEAAAAADY9tK/D+u8qY\nOkkZ01+Qt6xUkhQ98ihneanTTpddUFhv5RCeAQAAAAANhnfpDwpNm6zQtCnyLV8qSYq3bafyiy9V\neOBgxffZz5W6CM8AAAAAAFd5SkuUMf0FZUydpOD770qS7KxsVQ0crKpBQxTt0k3yel2tkfAMAAAA\nAKh/8bgCb7/pzJY982V5KislSZGux6tq4GCFTz5NyslxuciNCM8AAAAAgHrj+8Y4gfmZqfKt/FmS\nFNtrb4UHDVHVH89Sol17lyvcMsIzAAAAAKBOedatVcbzzyo0bZICn30qSUrk5avy3GGqGjREsd8d\nJXk8Lle5bYRnAAAAAEDti0YVfG2uQlMnKThnpjzRqGyvV+ETeys8aIjCfQdImZluV7ndCM8AAAAA\ngFrj+/ILhaY+rdBz/5P3118lSbGOnVQ1cIjCZw5UolVrlyvcOYRnAAAAAMAu8axerdCz0xSaNln+\nRV9JkhLNmqni4uEKDxqi2EGHNPhh2akQngEAAAAAO66qShmzZzjLS73xmjzxuOxAQOEBp6hq0BBF\nTuwtBYNuV1lrCM8AAAAAgO1j2/J//KFCUycr48Xn5C0ukiRFDz1MVYOGKPz7M2U3a+ZykXWD8AwA\nAAAA2CbvTz8q9L8pypg6Sf7vvpUkxVu3UcW556tq0BDFrQNcrrDuEZ4BAAAAAL9VXq6MV6YrNHWy\nAu+8JY9tyw6FVHXGmaoaOETR7j0ln8/tKusN4RkAAAAA4EgkFHhvvrO81EsvylteJkmKHn2sMyz7\n1N/Lzst3uUh3EJ4BAADSgG/RQuWOGiFPuEqRPv0V7tNfsSN/16R6fQDUHe/33yk0bbJC/5si34rl\nkqR4+z1VPvwyVQ0crMRee7tcofsIzwAAAA1ccNYM5Y64SN7yMtmhkLJG36us0fcq0ayZIr36Ktyn\nv6I9T5Cdk+t2qQDSiKekWBkvPq/Q1EkKfPi+JCmRnaPKwecoPGiIosccJ3m9LlfZcBCeAQCNn23L\n8+uv8q1YJt+K5fIuXy7f8mXyrVgmxeIqv+nvih1ymNtVAr9l28ocfZ+yb/+7lJmp4vFPKnJibwXn\nvaXgnJkKzp6p0NRJCk2dJDsYVLRLN4X79Fekb38l2rZzu3oADVE8rsBbrys0dZIyZr4iT1WVbI9H\nkeN7qmrQYIUHnCJlZ7tdZYPksW075U6WZbWU9ImkE40x32xjV3vNmtLaqg2ocy1a5Io2i3RBe90G\n25Zn3Tr5ViyTd/ky+ZYvd75esVy+5M1TUbH1h4dCKr3nAYX/eFY9Ft340WZ3UVWVcq+9UqFpkxXf\nfQ+VPDlFsYMO2XSfREL+BZ8pOHumMmbPlH/hl9WbYp0PUrhvP0X69Ffs0MPpPUqB9op0s6Nt1vf1\nYicwPzNVvtWrJEmxffdzrmM+c5ASe7Stq1LTSosWuZ6tbUsZni3LCkiaJqmjpFMJz2hM+EOJdNKk\n26tty1O0Xr7ly5xe4xU1wnEyLHsqyrf40ERBgeLt9lSiXXvF2++pePv2SrTbU/F27ZVo106BD95T\n7vCL5C0pVsXwy1V+862Sn4FZtaFJt9ld5Fm9WvnDzlbg4w8VPeJIlUyYpESr1ikf5/1xhYJzZilj\nzkwF3nlbnkhEkhRv2UqRPk6QjhzfQ8rKquOfIP3QXmtRLCb/gs8UmP+O/N98LTszS3Z2tuycnOQt\nd5OvE9k17s/OljIzJc9W8wuStqfNetauVcbz/3Nmy17wmSQpkV+g8Ol/UNWgIYodfiSv9WZ2NTzf\nJ2mGpBskXUp4RmPCH0qkk0bdXm1bnuKijUOqN/Qgr1gu3/Ll8q5YLm/Zln/2RG6eEu33rBGM2yu+\nIRy3b79dM4L6vluivKFD5P/GKNKth0oefVz2bs1q+6dschp1m61Dvi+/UP55Z8n304+q+sNAld77\noBQK7fBxPGWlCrz5hjLmzFRw7ix5166V5Iy0iBzfwwnSffop0bpNbf8IaYn2ugtiMfm/XKDAO/MU\neHeeAu+/Vz1D886wfT7Z1YE6ectOBu7qEL5ZAK+532b7KCOjUQbErbbZSETBV+c4s2W/OlueaFS2\nz6fICb1UNWiIIn3679Q5panY6fBsWdb5kvYwxtxuWdYbkoYbY8w2novwjLTgWbdWGS+9qNy2rbRu\nj70V32dfKRBwuyxgm9L9jZ2npHiTa429yWDsBOZl8paWbPFxiZzcZDhun+wtTobj9ns64Ti/oHbq\nKy1R7mWXKGPWDMXb76niCZMUP/CgWjl2U5XubdYNwZenK+/yS6TKSpX/9W+qvOLq2nnTH4/L/8nH\nTpCePUN+83X1puihhzlBum9/xQ48uFGGjO1Be90B8bgTlue/szEs1ziHx/bbX9HjuinatZuiBx0i\nTzQqT1mpPGVlyVupPOXlztflG+/3bti2Yb/y8o3bw+GdLtf2+zcN3Nk5vw3nyW2J6h7wDUE99zf7\nKRisjVdxl23SZm1b/i8+V8bUSQo9/0z1h2WxTgeqatAQVf1hoOyWLV2sNn3sSnh+S5KdvB0qyUg6\nzRizeisPSX0BNeCmb7+V7r1XevxxqbJy4/3BoHTAAdJBB216a9u2yb6JAHZYSYm0dOmmtx9+2Ph1\nUdGWH5edLe21l9Shw8Zbze8LC+vv/2EiId16q3TLLc6w1scflwYOrJ/nRtNm29I//yndeKPzf+Lp\np6XTTqu75/v+e+mll6Tp06W335ZiMef+du2kk0+WTjlF6tmT3ik44nFpwQLpzTelN95w2kxJjQ88\n999f6tHDaTPdu0tt6mA0QzQqlZb+9lZWtuX7U+0Tje58LcGglJsr5eQ4/27rtj377MqlQitXSk89\nJU2cKC1c6NzXsqV09tnS0KHSIYds+/HYkp0ftr1BsueZYdtIS/6PPlDWmNEKznhJHttWvG07VV54\nqXIKc1T50afyL14o/9eLfzOhUCK/QPEDOirWqbNiHZ1bvGPHJrswPNzleq9IWdmm1xovS85cveG+\n9eu3+DA7K0vxdjV6jdt32GR4tb3bbg3uQ6rgjJeVe9kl8paXqWLUNSq/4SbW0t0JrrfZdFFZqdyr\nL1PouWcUb9tOxU9MqddRD57iIgXfeE3B2TMVfG2OvMkPuuysbEV6nKBw3/6K9Ooru0WLeqvJDbTX\nGhIJ+RZ+peD8txV49x0F3ntX3uKNH4DG9tpb0a7HK3pcV0W7dEvPof/h8MZe8Oqe7uStrEzezXvK\nt9QbXnN7PL7TpdgZGZsOTU/eEjV7vbOzN9mueFx5M6fLnjNHnkRCdjCoSJ/+qjpriCI9ezGichfs\n0jXPGxCekXbicQVnzVDWmAcU+OgDSVL04ENVedkohU/5veT3b/qHMpGQd+kP8i9e5ITpxYvkW7xQ\nvu+/kyeR2PTQbdsp1rGT4h07K9axkxOq992vwQzjQeNU52/sysvl+3GFfMuX1piUa7m8K5Y5E3Wt\nW7fFh9mhkBOO2+9ZHYgTySHW8fYdZDdr1uDC8fbwma+Vd95Z8v/wvcIn9lbpQ+NrbYh4U0EYSc27\naqXyhg5W4LNPFT3qGBU//rS7ITUWU+DD950gPXuG/N9/J0myPR7FjvidE6T7DlDcOiAt/19vS5Nu\nr4mEfIsWKvjuPGco9nvvVH+IIknxDnsp0qWbol26KXpcVyV238PFYhsg25aqqn4zJN1bvpUAXrYx\npDv/bmHbZu89tyZ6+BGqGjhE4dP/ILtwtzr+QZuGWgnP24nwDPdVVCg0dZIyH3pQ/h++lySFe/dV\n5chRih7XdZM/9tv1h7KyUv4lRr5FC6uDtW/xouop/jewAwHF993PCdOdDlQ8GaoTezD0G7Vjl9/Y\nVVQ44XjFxhmrvcnrj30rlsv7669bfJidkbHZtcbtN85c3W5P541+I23jnuIi5Q6/UBmvzVVs731U\nMnGyExqwXZp0GNkO/gWfKe+8wfKt/FlVg4ao9O77nYmNGhDft0uqg3Tgw/er39DH23eoXgYremyX\nRvHhcZNqr4mEfF8vVuDdeQq+M88JyzVGD8Xbd1Cki9OrHO3SjSWM6pttSxUVyRBeKm/5bwO4ImHl\n/v5krWnGBxm1jfCMJsGzZo0yH3tEmY8/Ku+6dbKDQVUNHKzK4Zcrvr+1xcfsyh9Kz9q1yR5qJ0w7\nXy/+zXI5ibx8Z+h3spc63sn5lx4s7KiU7bWqSr4fVyTXOV62sdd4w4zVa37Z4sPsYFDxtu2qA/HG\nYNxeifZ7KtGiZdNeHzYeV/ad/1DW/fcokZ2j0v8+osiAk92uKi00qTCyg4LTn1feFcOlqiqV33yb\nKkde0eA/hPKsW6vga3OdMP36q9Uz4Cdy8xQ5oZezFFavPmnb+9Wo26tty2e+VmD+2wpu6FlOTigl\nSfF27RXt0k2RDcOw27V3sVhsr0bdZl1EeEaj5vt2iTLHPqjQtEnyhMNKFBaqcthFqhx2iexWrbb5\n2Fo/6SQS8i5ftkkPtX/RV/J99+1vh37vvkcyTB+4cej3fvs3ik/vUTda5AW17vNF8iavNd44pDrZ\ng/zLludytAMBJfZou7HXOBmMNwyvTrRq3bTD8XbKePE55V45Up6KCpVfe70qrr2e1y0F3thtQSKh\nrLvvVPbddyqRk6vSh8cr0ruf21XtuEhEgffmKzhnpjJmz5Rv+TJJzhJD0aOOqZ69O77vfi4Xuv0a\nVXu1bfmWfKPAO841y8F3520yuii+R1snLG/oWW6/p4vFYmc1qjbbgBCe0fjYtgIfvKfMMQ8oY9YM\nSVJ8zw6qGH65qs4625mpdDvU20mnqmrLQ79XrdxkN9vvrx76He/Yubq3OtGufYPvkcAuiMXk/XWN\nvKtWyrtqlfPv6lXOLXmfb9VKedf+6gzl2ozt8ymxRztnKafq647bV699nGjVmsmuaonvqy+Vf/4Q\n+ZYvU7jfAJX+9xHZuXlul9Vg8cZuMxUVyh01QqHpzyvevoOKn5qq+AEd3a5q19m2fF8vdoL0rBny\nf/qxPMlzVWyffZ0g3W+Aor87etdmFa5jad1ebVu+b5coMH+eAvPnKTh/nry/rqneHG+zuzMEu+vx\nihzXVYk9O/C+ohFI6zbbgBGe0XjEYgrOeMmZBOzTTyRJ0SOOVMXIK51hlDsYENw+6XjWrZX/68Xy\nLV4o/yLn5vt6sbzlZZvsl8jJTc76feCmQ78LCl2qHNslHndCcY0QvGkwTn7/65ptTgxiZ2Up3qq1\n/O3bqapN240zV+/Zwfm3dZsG/Ya0sfGsW6u8i4cpOO9Nxfa3VDJxkuL7pE/vWn1y+xzbkHh//kl5\n5w1W4Iver8caAAAgAElEQVTPFTm2i0oee8qZTK8R8vzyi4KvzVHGrBkKvvV69UoWiYICRU7so0jf\n/oqc0KvBrVyRVu3VtuX7/lsF3pnnrLM8/51NRh/FW7epvl450qWbEh32Iiw3QmnVZtMI4Rnpr6xM\noSlPKeuhMfItXyrb41Gk30mqGDlKsaOO3uk/CA3ypJNIyLtieY0e6uTM398u+c0yCPE2u1dPTFY9\n9Ht/q8FNONPoJBLy/PqrfKtXJsPw6o3hePXKjcH4l9XbDsWZmUq0aq1Eq9aKt26jROvWSrTa8G9r\nJZL32Tm5ksfTMNtrUxWLKfvWm5X10INK5OWr9KFxivTq63ZVDQ5t1uH/5CPlDR0i3y+rVXnOUJXd\neU/TuUSnqkrB+W8rOGumgnNmyrfyZ0nOSKvosV0V6dtP4T79nXDnsgbdXm1b3h++VzDZsxx4951N\nRq/FW7ZStGs3RY/rpmjXborvtQ9huQlo0G02jRGekba8q1cpNP4RZU4YJ29RkexQSFWDzlbl8JG1\n0tOTViedcFi+Jd84E5Mt2jhR2YY3IhvYPp/i++zrBOlOmw395vrMbUsk5Fm3Tt5VK5PBeNOh004w\nXu2E4lhsq4exMzKqQ3C8dRslWrXaGIpbt0kG49ZOr8sOvLlJq/baRGT8b4py/zRKCodV/pebVTnq\nGt6w1kCblTKenabcqy6TolGV3/pPVV48oum2EduW/6svkrN3z1RgwWfVm2IHdFSkT3+F+/ZX7PAj\nXbnUpEG1V9uWd+kPCr77TvV1yzX/3idatEzOhn28ol26Kb7Pvk23XTVhDarNNiKEZ6Qd39eLlTl2\ntELPTpMnElGiWTNVXnCJKoddLLt581p7nsZw0vGsX+cM/d7seuoNs6BukMjOSQ797rzJGtX2bo1z\n2OAmbNsJxas3Dpv2rarRQ7whKP+yWp5odOuHCQare4oTrdsovqGHuLqX2AnKdkFhnbyJaQzttTHy\nL/hMeeefLd9PPyp8yu9Vcv8YKSfH7bIahCbdZhMJZf3rH8q+924lcvNU8ujjip7Q2+2qGhTvqpUK\nzpml4OwZCs57S56qKklSonlzRXr1VbjvAEW696y3/0+utlfblnf5sk17ln/6sXpzonkLZ3Kv47oq\n2vV4ZyI2wnKT16TPsXWI8Iz0YNsKvPO2MwnYa3MlSbG991HliCtUNXCwlJlZ60/ZaE86ti3vjytq\n9FDXGPq9WY9pvHWbTYZ+xzt1Vmw/SwqFXCp+B9i2PEXrN+0hrg7Gqze5vtgTiWz9MIHAxhCc7BV2\nwnEbJVq22jh8unA3V9+sNNr22gh41qxR3kXnKfjefMU6dlbxxEkNYhiq25psmy0rU97llypjxkuK\n7bW3Sp6cutUlE5FUXq7gvLcUnD1DGXNmVS+tZweDinY9XuHk7N11ud5wfbdX74rl1ZN7BebPk+/H\nFdXbEs2aKXpccumorsc77YewjM002XNsHSM8o2GLRpUx/XlljhmtwJcLnLuOPlYVI0cp0rd/nQ41\nbnInnXBYvm+XJNekXlQ9UZnv55822c32+RTfex9n6HeNYJ3Ys0P9DP22bXlKijedYCvZQ+yrvm+1\nvKtXyhMOb/0wPt/GMNwqOXw62UMcb91aiZZOSLZ32y0thrQ3ufaabqJR5dx0vTIfe1SJggKVPDJB\n0R4nuF2Vq5pim/X+uEL5554l/8IvFenWXSXjJqbtuseuSSTk//zT5OzdM+Vf9FX1puiBBzvrSfcb\noNjBh9bqubuu26v3xxUbw/K771Qv7yVJid12c64BT163HLcOSIu/S3BXUzzH1gfCMxokT2mJQk89\nocxHxsj304+yvV5FTjpVFSMuV+zIo+qlBk46Dk/R+i0P/S4t2WQ/OytbsY4dNwvVnbd/xljblqes\ndGMorhGCq5djWrXSGT5dWbn1w/h8SrRoWeMa4pqTbLVWvJUTkO1mzRrVmw/aa3oIPf2Ecv7vGikW\nU/nNt6lyxOVNtseoqbVZ/0cfKH/oEHl/XaPKoReq7J//lgIBt8tKe94VyxWcM0sZs2coMH9e9eU1\n8VatnSDdt78i3Xrs8gi12m6v3p9/2rjO8vx58i1bWr0tUVio6LFdFe3SVZEuxztLljWiv1eoH03t\nHFtfCM9oULw//6TMRx9S6InH5S0tkZ2VparB56jikpFK7LV3vdbCSWcbbFven36sDtL+ZLD2LTG/\nHfrdstXGMN2psxQIbAzIv2xcksm3elX1kiVbfEqvNxmKtzTJltNrHG/VxrnuvQmuW0x7TR/+jz9U\n3rBz5Fu9SlV/GKjS/4yuk0tPGrqm1GYzpk5yJo+Lx1V2+79VdcHFbpfUKHnKShV443VlzJ6h4Kuz\n5V23TpKzekHk+B6K9B2gSO++zvr2O2hX26t35c/V1ysH33lbvqU/VG9L5BcoemwXRbt2U+S4bop3\n6kxYxi5rSufY+kR4RoPg++pLZY0drYznn5EnFlOiRUtVXjxclUMvcG1IGyednRCJ/Hbo9+JFm1yr\ntTnb45HdvMXG5Zg2uZa4Rq9x8xasV7wNtNf04l29SnnDzlHg4w8VPfhQlUx4Wom27dwuq141iTYb\njyv79luU9eB9SuQXqGTcREW793S7qqYhHpf/44+cID1npvzfmOpN0cMOT87ePUDxzgdu1+iPHW2v\n3tWrnLCcvPm//656WyIvX9Fjj6teaznW6cAm+aEv6laTOMe6gPAM99i2Am++rqwxDyj41huSpNj+\nlipHjlLVGX90fVIqTjq1x1NSLN/ixfJ/vUhKJDaG4tZtnFDM0MVdRntNQ+Gwcm64VplPTVSieXOV\njHtC0eO6ul1VvWnsbdZTVqrcERcpY/ZMxfbZVyVPTa2VZRSxc7w/fK+MOcllsN6bL088LkmK79FW\nkT79FO47QNEu3aSMjC0+PlV79axereC78xSY/44C786T/9sl1dsSuXlOWE6usxzrfBBhGXWusZ9j\n3UJ4Rv2LRJTx/DPKGjNa/sULnbu6Hq/KkVcockLvBjNUiZMO0gntNU3ZtkITH1POX66TJJXddoeq\nLrikSVwH3ZjbrHf5MuWfO0j+xYsU6d5TJY9OcJapQ4PgKS5S8PVXnWWwXntV3uIiSc6yjdEeJyjc\nt78ivfpusvzl5u3Vs2ZNMiwne5aXfFO9LZGTq+gxx24MywcezMgp1LvGfI51E+EZ9cZTXKTQExOU\n+ehY+VatlO3zKXza6aoccYVihxzmdnm/wUkH6YT2mt4C77+rvAvOdSaTGnKuyu68x/XRN3WtsbbZ\nwPvvKm/Y2fKuXauKi4er/JZ/EpwasmhUgQ/fV3BWcnj3D99Lci4pih15lLOedN/+2s3qoOKXZimY\nnOTLb76uPoSdla3oMccq0uV4Rbt0dWb65ncOlzXWc6zbCM+oc94Vy5X5yFiFnpoob3mZEtk5qjpn\nqCovGaFEu/Zul7dVnHSQTmiv6c/704/KG3a2Ap9/pugRR6rksaeUaLO722XVmcbYZkOTnlTOdVdJ\ntq2yO+9R1XnD3C4JO8K25ft2iYKzZihjzkz5P/pAnkTit7tlZSt69DGKdOmm6HFdnQ4ALj9CA9MY\nz7ENAeEZdca/4DNljh2tjBeflyceV7x1G1VePEJV550vO7/A7fJS4qSDdEJ7bSQqK5V73VUKTZus\neMtWKnnsKcWOOtrtqupEo2qz8biyb7lJWQ89qERhoUrGP6lo1+Pdrgq7yLN2rYKvzVFwziyFwhUq\nP+JoRbp0U+zQwwnLaPAa1Tm2ASE8o3YlEgq+PleZY0Yr+M7bkqRYx86qGHmFwqefKQWDLhe4/Tjp\nIJ3QXhsR21bmo2OV/be/Sl6v04N57vluV1XrGkub9ZQUK/fSC5Tx2lzF9rdU/OTUel9aEXWvsbRX\nNB202bqxrfDMxRrYflVVCj07TZljR1cvBxHp3lMVI0cp2uOEJjH5DQDUCo9HlZeMVOyATsq75Hzl\n/mmU/F8sUNnt/0qrDyCbAu8P3zsTg31jFD6xt0offkx2Xr7bZQEAXEB4RkqedWuVOfExZY57WN41\nv8j2+1X1x7NUMeIKxQ88yO3yACBtRY/vofWz31T++Wcrc+J4+RcvVPH4J2W3auV2aZAUmD9PeRec\nI+/69aoYfrnK/3Ybyw8BQBNGeMZWeZf+oKyH/6vQ5KfkqahQIjdPFZddqcqLhyux+x5ulwcAjUJi\nzw5a//Ic5V59mUIvPKfCPt1VMuFpxQ47wu3SmrTQE48r5/o/SR6PSu99UFVnn+d2SQAAlxGe8Rv+\nTz5S1pjRCr4yXZ5EQvE92qry/25U1Tnnyc7Nc7s8AGh8srNV+vDjih10qLL/8TcVnNpPpXfdp/BZ\nZ7tdWdMTiyn75huUNe5hJZo1U8njTyt6zHFuVwUAaAAIz3AkEgrOnqmsMQ8o8MF7kqToQYeocuQV\nCp96OjNOAkBd83hUecVVinXurLxLL1TeqBGq+HKByv9+O+fgeuIpWq+8i89X8K03FOvYScVPTFFi\nzw5ulwUAaCAIz01dZaVC0yYr86EH5f/uW0lSuFcfVY4cpWiXbkwCBgD1LHpCb62f/Ybyzx+irEcf\nkn/xIpU8OlF2s2Zul9ao+b5borxzBsn/3bcK9+2v0rHjZOfkul0WAKAB8bpdANzh+fVXZd11h5od\n3km5110l34rlqhxyrta9/YFKJj3jrF1JcAYAVyT23kdFM15VeMApCr7ztgr7dJfvyy/cLqvRCrz1\nhgr6nSj/d9+q4oqrVTJhEsEZAPAbhOcmxvfdEuVcd7WaHd5J2XfdIcXjKr/qWq375CuV3fdfxQ/o\n6HaJAABJdk6uSh57UuXX3yjfiuUqPLm3Mp5/xu2yGp3Q+EeUf9YZ8lRWqGT0Qyq/6RZm1AYAbBHD\ntpsC25b/ww+UNeYBBWe9Io9tK95+T1UMv0xVZ50j5eS4XSEAYEu8XlVc82fFOh+k3BEXKe/SC1Tx\n5Rcq/+vfCHi7KhpVzl//rMwJ45Vo3kLFEyYpdtTRblcFAGjACM+NWTyu4IyXnUnAPvlIkhQ97HBV\nXHalIgNOkfz8+gEgHUT69lfR7DeUd95ZynrwPvm/+kIlDz8mu3A3t0tLS57165R30VAF572lWOeD\nVPzkFCXatnO7LABAA0d6aozKyxWa8rSyHnpQvmVLJUnhfgOcScCOPpZrmQEgDcX3219Fs99Q7oiL\nlDF3tgr79lTxxMmKd+zkdmlpxfeNUf45A+Vb+oPCA05RyYMPMwILALBduOa5EfGsXq2sO251JgG7\n4Vp5V61U5bnDtO7dT1TyxBRnnUqCMwCkLTsvXyVPTlX5NdfJt/QHFfY/UcGXp7tdVtoIvD5XBf1P\nlG/pDyq/+lqVPPYkwRkAsN0Iz42Az3ytnKsvV7MjOiv73rslj0flf/o/rf10kcruuV/xffdzu0QA\nQG3xelVx/U0qHv+kJCn/gnOUdedtUiLhcmENmG0r8+H/Kn/IH+WJhFUydpwqbrhZ8vI2CACw/Ri2\nna5sW4F331HmmAeUMXe2JCm2196qHH65qgYNkbKyXC4QAFCXIqecpvX77qf8885S9n/ukv+rL1U6\n5lHZeflul9awRCLKuf5PynxqouItW6nkicmKHX6k21UBANIQ4TndxGLKeOkFZY4ZrcCCzyRJ0d8d\nrYqRoxTpN4DZVwGgCYl37KT1c95U3iXDlDFnlnz9TlDJxMmK77e/26U1CJ61a5V3wTkKvjdf0YMP\nVckTk5XYfQ+3ywIApCnGK6UJT1mpMh/+r3Y7+lDlXXqB/F98rvDJp2n9K3NV9MpcRU46heAMAE2Q\nXbibiic/q4rLrpT/2yUq6NtTwdkz3S7Ldb6vF6uwb08F35uvqlNPV9H0WQRnAMAuITw3cJ7iImXf\n9jftdmgn5dx0g7y/rlHlBRdr3XufquSxJxX7HWtSAkCT5/er/G+3qeSh8fLEY8o/d5Cy7vlXk70O\nOjhnpgoG9JJv+VKVX3eDSh95nMuZAAC7jGHbDZj/80+Vd9FQ+ZYvU6J5C5Vff6Mqz79Q9m7N3C4N\nANAAhc/4o+L77a+8oUOU/a/bneugR4+VnZPrdmn1w7aVOWa0sm+9SQqFVDxuoiKnnu52VQCARoKe\n54bIthUa95AKTuot74rlKr/6Wq39dKEqrvkzwRkAsE2xgw7R+jlvKdKlmzJema6CAb3k/eF7t8uq\ne+Gwcq8cqZxbblSiVWsVTZ9FcAYA1CrCcwPjKSlW3kVDlfuXP8vOy1PxlOec5TRCIbdLAwCkCbt5\ncxVPe0EVl4yQ/+vFKuzTQ4HXX3W7rDrjWbNGBWecrNCUpxU97HAVzXlTsUMOc7ssAEAjQ3huQPxf\nLlBhr+OV8dILihxznNa/Pl/Rnie6XRYAIB0FAir/x79U8sBYeaoqlT/kTGU+eL9k225XVqt8C79S\nYd8eCnz0garOOFNFL8xUonUbt8sCADRChOeGwLYVmjDemdxk6Q+qGHWNip97WYk2u7tdGQAgzYXP\nOltFL85UolVr5dx6k3KHXyBVVLhdVq0IznxFhSf1lu/HFSq/4SaVjh0vZWa6XRYAoJEiPLvMU1aq\n3BEXKvfPV8vOylLxpP+p/Ma/S37mcgMA1I7Y4Udq/Zy3FD3qGIWef1YFJ/eRd/kyt8vaebatzPvv\nUd75QyTZKn7sKVVcfZ3k8bhdGQCgESM8u8i3aKEKendX6LlnFD3yKK1/7R1FevV1uywAQCNkt2ql\noudeVuXQCxX46gsV9umuwLy33C5rx1VVKXfkxcq5/RYldt9D61+ao8jJp7pdFQCgCSA8u8G2FZr0\npAr79ZT/u29VMeIKZ0hd23ZuVwYAaMyCQZXdda9K775fntJS5Q/8vTIfGZM210F7Vq9WwekDFHp2\nmvOh8+w3FT/oYLfLAgA0EYTn+lZertwrhiv3qstkZ4RUPHGyym+5XQoE3K4MANBEVJ03TEXPz1Ci\nWXPl3Hi9cq8YLlVWul3WNvm/XOBMDPbJx6r641kqeu5l2S1bul0WAKAJITzXI5/5WoX9eio0bbKi\nhx2u9a++rUj/k9wuCwDQBMWOOlpFc99S9PAjFJo2WQWn9ZP3px/dLmuLgi+9qIJT+sq78meV3XSr\nSh98mCUcAQD1jvBcTzKmTlJh3x7ym69VcfFwFb00R4k9O7hdFgCgCUu02V1FL8xU5eBzFPj8MxX2\n7i7/+++5XdZGtq2su+9U/oXnyvZ4VTJxsiqvuIqJwQAAriA817XKSuVcfbnyrhgu2+dX8fgnVX77\nv6Vg0O3KAACQQiGV3fdfld5xlzzr16ngjJMUmjDe/eugKyuVe+kwZf/7n4q331NFr8xVpN8Ad2sC\nADRphOc65Pt2iQr7naDMp59Q9KBDnGHap5zmdlkAAGzK41HVhZeq+JnpsvPzlfvnq5Vz7ZVSOOxK\nOd6VP6vgtH4KvfCcokcfq/Wz3lC8U2dXagEAYAPCcx3JeO5/KujdXf7FC1V5/oUqemWuEnvt7XZZ\nAABsVbRLN2c96IMOUeaTE1Rwxsnyrl5VrzX4P/tEBX16KPD5Z6ocfI6Knpkuu3nzeq0BAIAtITzX\ntqoq5Vx3tfKGXyhJKnn4MZX9+14mNgEApIVEu/Yqemm2qs74owIffeB8EPzJR/Xy3BkvPKuC0/rL\nu+YXld3yT5Xd918pI6NenhsAgFQIz7XI+/13KjiptzInjlesY2cVzX1L4dPPdLssAAB2TFaWSseO\nU9nfb5f3l9UqOK2/MiY/VXfPl0go685/KO+SYbL9AZU8NVWVIy5nYjAAQINCeK4lwZdeVGHv7gp8\nuUCV5wzV+lmvK77vfm6XBQDAzvF4VDnyChVPeU52VpbyrhypnBuulaLR2n2e8nLlXTRU2f/5t+J7\ndlDRzNcU6dW3dp8DAIBaQHjeVeGwsv9ynfIvPFeeeEwlDz6ssv+MljIz3a4MAIBdFu1xgtbPeUux\njp2VOf4R5Z95qjxr1tTKsb0//aiCU/sp4+UXFenSTetnv6G4dUCtHBsAgNpGeN4F3mVLVXBKH2WN\ne1gx6wCtn/2mwgMHu10WAAC1KtFhL61/Za7Cp/xewffmq7BPd/kXfLZLx/R/8pEK+/RwRmydO0zF\nU5+XvVuzWqoYAIDaR3jeScGZr6iw1/EKfP6ZqgYNcZbR4NNyAEBjlZOjknETVfbXv8n7808qOKWv\nMp6ZulOHyvjfFBX8foA8a39V2e3/Utnd90nBYC0XDABA7SI876hoVNk3/0X5QwfLE65Syf1jVDr6\nISk72+3KAACoWx6PKq/8k0qeniY7mKG8kRcr++a/SLHY9j0+kVD2P/6uvMsukZ0RUvHkZ1V58Qgm\nBgMApAXC8w7w/rhCBaf2U9ZDDyq2735aP+sNhQef43ZZAADUq0ivviqa/bpi+1vKeuhB5Z/1B3nW\nrd32g8rKlHf+2cp64D+K7b2Pima9rmjPE+unYAAAaoE/1Q6WZfkkPSppf0m2pOHGmIV1XVhDE5w7\nS7mXXyrv+vWqOuOPKrv7Ptk5uW6XBQCAK+L77Keima8p97JLlDFrhgr79FTxxEmKdz7wN/t6VyxX\n/rlnyb/oK0W69VDJuAmyC3dzoWoAAHbe9vQ8nywpYYzpKulGSbfXbUkNTCym7Nv+pvyzB8pTUaHS\nu+5T6dhxBGcAQJNn5+apZMIklV97vXzLl6rwpF4KTn9+k338H7yvwr495F/0lSovuFjFU54lOAMA\n0lLK8GyMeVHSpclvO0haX5cFNSTelT+r4PSTlDX6XsX22ltFM15V1dALuDYLAIANvF5V/PkvKp4w\nSbbHq/yLhir79lukeFyaMEEFZ5wkz/r1Kv3Xf1R25z1SIOB2xQAA7JSUw7YlyRgTtyxrgqTTJZ1Z\npxU1EIHXX1XeZRfLu3atqk49XWX3jpadm+d2WQAANEiRASeraNbryjvvLGXdf4+CM1+WvjGyCwpU\nMv5JRbt1d7tEAAB2yXZPGGaMOV/Odc+PWpaVWWcVuS0eV9adtyl/8B/kKS1V6R13q/TRCQRnAABS\niFsHqGj2G4qc0Ev+b4xkWc7EYARnAEAj4LFte5s7WJZ1rqS2xpg7LMvKk/S5pI7GmPAWdt/2wRq6\nlSulIUOkN9+U9tpLmjZNOvJIt6sCACC9xOPS3LnSccdJeXz4DABIK1u9Rnd7wnOmpAmSWksKSLrD\nGPPSVna316wp3cka3RWY95byhl8o75pfFO5/skofGCM7v8DtslDHWrTIVbq2WTQ9tFekG9os0gnt\nFemGNls3WrTI3Wp4TnnNszGmUtKgWq2oIYnHlXXvXcq66w7J51PZbXeo8pKRTAoGAAAAAKi2XROG\nNVaeNWuUN+IiBd9+Q/G27VTyyOOKHXmU22UBAAAAABqYJhueA+/NV+4lw+RbvUrhPv1UOvoh1p0E\nAAAAAGzRds+23WgkEsq8/x7ln36SvL+uUdnNt6nkiSkEZwAAAADAVjWpnmfP2rXKu+xiBV9/VfE2\nu6vkkQmKHX2M22UBAAAAABq4JhOe/R+8r7xLh8n380+K9DxRJf99VHbz5m6XBQAAAABIA41/2LZt\nK/O/D6jg9/3lXbVS5X+5WcWTnyU4AwAAAAC2W6PuefasX6fcUSOUMXum4i1bqfThxxTt0s3tsgAA\nAAAAaabRhmf/Jx8p75Jh8q1Yrki3HioZO052y5ZulwUAAAAASEONb9i2bSvzkTEqOLWfvD+uUPl1\nN6h42vMEZwAAAADATmtUPc+e4iLlXnW5Ml6ZrkTzFioZO07R7j3dLgsAAAAAkOYaTXj2L/hMeRcN\nlW/ZUkWO66rShx9TolVrt8sCAAAAADQC6T9s27YVGv+ICk7qLd+ypSq/+loVPzOd4AwAAAAAqDVp\n3fPsKS1RzjWjFHrxOSV2203FYx5V9ITebpcFAAAAAGhk0jY8+776UnkXnSf/998petQxKnnkcSV2\n38PtsgAAAAAAjVD6Ddu2bYWenKDC/ifI//13qrj8KhU9/wrBGQAAAABQZ9Kr57msTLnXXaXQs9OU\nKChQyfgnFOnT3+2qAAAAAACNXNqEZ9/iRc4w7SXfKHrEkSp5ZIIS7dq7XRYAAAAAoAlIi2HbGVOe\nVmG/nvIv+UYVl16mohdnEZwBAAAAAPWmYfc8V1Qo9/o/KTTlaSXy8lUydrwiA052uyoAAAAAQBPT\nYMOz7xvjDNP+erGihxymkkcnKNFhL7fLAgAAAAA0QQ1y2HbG/6aosE8P+b9erMoLL1HRy3MIzgAA\nAAAA1zSsnufKSuXc+H/KfHKCEjm5Khk3UZFTT3e7KgAAAABAE9dgwrPvuyXKu+h8+Rd+qeiBB6t0\n3ATF997X7bIAAAAAAGgYw7YzXnxOBb17yL/wS1Wed4GKZrxKcAYAAAAANBju9jyHw8q5+QZlPj5O\ndla2SsaOU/gPA10tCQAAAACAzbkWnr1Lf1DeRUMV+OJzxTp2Usm4JxTfb3+3ygEAAAAAYKtcGbYd\nfHm6Cnsdr8AXn6tyyLlaP/N1gjMAAAAAoMGq357nSETZt96krEfGys7MVMn/t3evIZbXdRzHP7O5\n66as5YPBHpQWXX6GJl3soumibJGG4Q1DUTKlfCCkQRGZD8LMrpppYQUVYUiJmQ8EW1yvawZiSloP\n+pXdpCBYQtHCtV2dHsxZGtbd+c7unjPnnN3XC5aZOf9zznxhfvyZ9/wve/138vzZ5y7rCAAAALCr\nli2eVzz5txx00Uez8tFHsvVNbf407cPfvFzfHgAAAHbbspy2vWr9HTl43fFZ+egj2XzW2Xlq/b3C\nGQAAgKkx2iPPW7bkwKuuyAE3XJ+51avz7De+lc3nfiSZmRnptwUAAIBhGlk8r/jH33PQRRdk5cMP\nZevr3zB/mvYRR47q2wEAAMDIjOS07VV335mD1x2XlQ8/lM2nn5mnN9wvnAEAAJhawz3yvHXr/Gna\n112TuVWr8uzXrs3m8y90mjYAAABTbbjxvG5dDti4MS8c9to884Mbs/Wotw717QEAAGAchnva9saN\neUJ4sC4AAAkKSURBVP6UU/PU3Q8IZwAAAPYawz3yfPvteeZda52mDQAAwF5luEeeTzlFOAMAALDX\nGcndtgEAAGBvIp4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACg\nIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4BAACgIJ4B\nAACgsN9iG1trK5P8MMlhSfZP8sXe++3LMRgAAABMiurI87lJNvXe1yY5Kcm3Rz8SAAAATJZFjzwn\nuSXJzwafr0iydbTjAAAAwORZNJ577/9JktbamsyH9OXLMRQAAABMkvKGYa211yS5J8mNvfefjn4k\nAAAAmCwzc3NzO93YWjskyX1JLu6937uE99v5mwEAAMBkm9nphiKer0tyVpK+4OGTe++bd/KSuU2b\nnt2tCWEcZmfXxJplWlivTBtrlmlivTJtrNnRmJ1ds9N4rq55vjTJpUOfCAAAAKZIec0zAAAA7OvE\nMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAA\nABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTE\nMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAA\nABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTE\nMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAA\nABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABTEMwAAABR2KZ5ba+9u\nrd07qmEAAABgEu231Ce21j6T5Lwk/x7dOAAAADB5duXI8xNJzkgyM6JZAAAAYCItOZ577z9PsnWE\nswAAAMBEcsMwAAAAKCz5muelmp1dM+y3hJGyZpkm1ivTxpplmlivTBtrdnntTjzPLbZx06Znd3MU\nWH6zs2usWaaG9cq0sWaZJtYr08aaHY3F/iCxS/Hce/9rkmP3cB4AAACYKq55BgAAgIJ4BgAAgIJ4\nBgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAA\ngIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4\nBgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAA\ngIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4\nBgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAA\ngIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgIJ4BgAAgMJ+1RNaayuS3JDkqCTP\nJ/lY7/1Pox4MAAAAJsVSjjyflmRV7/3YJJ9Ncs1oRwIAAIDJspR4fm+S9UnSe38oydEjnQgAAAAm\nzFLi+aAkzyz4+oXBqdwAAACwT1hKBD+TZM3C1/TeXxzRPAAAADBxyhuGJXkwyYeS3NJae0+Sxxd5\n7szs7JpFNsPksWaZJtYr08aaZZpYr0wba3Z5LSWeb0vy/tbag4OvLxjhPAAAADBxZubm5sY9AwAA\nAEw0N/4CAACAgngGAACAgngGAACAgngGAACAwlLutr2o1toJSe5Jck7v/eYFjz+e5JHeu7tzMxFa\na3cluaz3/nBrbVWSTUmu7L1fPdh+X5JLeu+L/XdssCxaa1cneUeSVyU5IMmfk2zqvX94wXM+meSQ\n3vtl45mSfdlO1ugRSe7uvZ9TvPaAJBuSXNh776OeFRZabP/aWjs0yQ+TvCzJTJKLeu9/GNuw7JN2\nd//aWjsnyaVJtib5bZKLe+/uDj1Ewzry/PskZ2/7orX2lsz/oP2wmCQbkhw/+Pz4JOuTfDBJWmur\nkxwqnJkUvfdP995PTPKVJDf13k/cFs6ttdWttZuSXBz7WcZkR2s0yVnV61prRyfZmOR1sX4Zg8X2\nr0m+kOT6wfYvJfnyuOZk37U7+9fW2suTXJnkhN77cUlekeSUkQ+7jxlGPM8leSzJoa21gwaPnZfk\npsz/xQ4mxcJ4PjnJ95O8crBuj0ly/7gGg8L2+9LVSX6U5KodbINxmFnw8Y2ttTtaa79urX1+B89d\nleS0JI44Mwm234d+Kskdg89XJnlueceBl1jq/nVzkmN675sHX+8X63fo9vi07QVuTXJG5n+he2eS\nryY5dIjvD3vqN0kOH3y+NsnnktyV5H1JjkryizHNBbuk9/50kg2ttfPHPQvswOokp2b+d4wnk1yx\ncGPv/VdJ0lpb/smg0Hv/V5K0+QX69cyvZZgUO92/Dk7P3pQkrbVPJDmw937XOIbcmw3jyPO2v4b8\nJMnZrbW1SR4YwvvCUPXeX0zyWGvtpCT/7L3/N/PBfNzg353jnA9gL/G73vuW3vtzmb/uDqZKa+3E\nJLclOa/3/sdxzwMLLLp/ba2tGFwvvS7Jmcs+3T5gaHfb7r3/JcmBSS5J8uM4lZDJtCHJ5fn/KVm/\nTPL2JDODo3kA7BnXMTO1BuH8zSQf6L0/Ou55YDvV/vV7SfZPcvqC07cZomFd87ztB3lzklf33p/Y\n7nGYFHclOTaDeO69b0nyVFzvzGSba60d3Fq7dUfbln0aeKm5BR/ntn+8tXZOa+3jyz4V1Lbfv16b\n+Wudb2yt3dta++4YZ4NkifvX1trbklyY5Mgk9wzW72nLO+reb2Zuzu9dAAAAsJihnbYNAAAAeyvx\nDAAAAAXxDAAAAAXxDAAAAAXxDAAAAAXxDAAAAAXxDAAAAAXxDAAAAIX/AZPRMhwNjOBPAAAAAElF\nTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Mean Difficulty for Rails Homework per Day" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data_hw = pd.read_excel(\"cohort_3_rails.xls\", sheetname=1, skip_footer=3, header=0)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_mean_hw_day = ruby_data_hw[::1].mean()\n", + "ruby_mean_hw = ruby_mean_hw_day.dropna()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "plt.title('Mean Difficulty for Rails Homework per Day')\n", + "ruby_mean_hw.plot(color='red', figsize=(17,7), ylim=(0, 6))" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 15, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA9YAAAGyCAYAAAABE1zXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XNWd//HPnW5JNjZYprlScmiB0MENQgnNxpJlG0PC\nL6Rn2ZTdNEJPAoEUsruks2w6iY1tWbIx1XQXSigJJeQAcaHbso2xVabf3x93JI9tNetKGo3m/Xoe\nPda0O2dGX8+dzz3nnuO4risAAAAAANAzgUI3AAAAAACAYkawBgAAAADAB4I1AAAAAAA+EKwBAAAA\nAPCBYA0AAAAAgA8EawAAAAAAfAgVugEAgL5ljBkvaY2kFdba03a57XeSPilppLV2Sx+341FJYyV9\nkLsqIukxSd+y1jYaY06QdIW1drYxZoykeyWlJH1V0s2ShuX+/Xdr7SQfbfiZtbbWGHO7pF9Za5/r\n5mMDkuokHSbpVmvtL320If99CEqKSrrRWvunLh77XUmvWWvvMMZktQd/t/zXnnfdeEkvWmuH7unr\nKKT2Xks/Pe93JF0u6e3cVWF5/7e+bq19rT/bAgAYWAjWAFAa4pIONcaMtda+IUnGmHJJkyW5/dQG\nV9I3rLWLc88fkvRTSX+RdKG19hlJs3P3/aikd621ZxtjpkoaZa09NHfbX3y2ofX1niXp13vw2NGS\nPiapzFrr5z3b6X2QJGPM8ZJWGWMWW2ubOnqgtfZ6n8/bX3/rvlao1+JKmm+t/UrrFcaYT0h6yBhz\npLV2ewHaBAAYAAjWAFAaMpLulPRxeb2+kjRTUr2kr7feyRgzXdLV8nqTm+UFwCeNMftKuk3SKEn7\nSVovaY61tsEYs07S7ySdKa8n9k5r7RUdtMNp/cVamzbGfE3Se8YYI2l/ST+T9GVJN0jayxjzsKQx\nkg40xjwn6RJJz1hrK3LB/EeSLpCUlrRaXm/i1ZL2sdZ+OfeavpN/WZJjjLlR0gGS7jDGfEHSMkmj\nrbXbjDGOJCupxlr7Ym4bQyXdJ6+H8jljTI2kA3PPXyYpKekaa+39xpjLJH0md/1Wa+2Znb0POQdL\napSUyPWM/7ekkyUNzd33s9ba1caY38vrYf5J6wONMftJ+qOkfXJX3W2tva6r9789xphrJc2V936+\nKulL1toNuR7iZySdIa8GbpW0r6TTJJXLq4WXjDF75W47KvdePSTpm5JukdRorb021953JJ1prX3E\nGPNxeQdWLuri+TfLGy3wq7z2huQdaElIusxam8m77TJ59Z6Vd1DkHUn/z1r7bkfttNZmjDEJef8v\njpF0STsjGnZ6D3OjBy6VV5u3GWM+Lenz8v4P7S3pB9baXxtjlktaYK29Pde+1jr9Wmd/EwBAceAc\nawAoHX+S9Im8y/9P0u9bLxhjDpX0fUnnWWuPk/QFSYuNMWWSLpK0ylo70Vp7kLzQfWnuoa6kcmvt\nVEkTJX3ZGDOugzbs1MtorY3LC1AfzrvuUUnXyRu6foakz0r6V65N8bxtXC7pOElHywtIQ3Pt3LUn\nc9feTddae428oPVxa+3j8oLVx3O3f1RSQ2uozrVpu6TzJLVYa4+VN4x7oaSvWGuPkTec/o7c0GpJ\nOkLSaZ2E6h8bY543xqw1xmyQVCUvaKblBer9rLWnWGuPlBeav93Ba3EkfS73/hwvaYq8kQntDe3O\nf97njTHPS7q7dXvGmE9JOlfSCbnX9JLy6kPSuNzfYKakH0p6xFp7orwDDq0HLf5b3oGPE+T9bSol\nfU3S4ty2lfv3PXkjBiRphqSFXTy/K2mLtfZIa+3Pc9dF5f0N3rPWXpofqvOcKunLuffxGXkjJDpr\np+QF7aXW2sO6e5qApL9L+nBuFMhnteP/0Fx5B18k6ee521pPK/iM8g4SAACKGz3WAFAirLXPGWOy\nxpjjJDVIGmqtfdnrLJYknS2v1/jhvOsykg621v7UGDMl18N8qLwg+2Te5pfknuMdY8xGeT1167vZ\nNFfSrsOfnQ5+z3eWpD9aaxO5y3MlyRjTk+HSv5AXgH4l74BCe4Envx0nS3rdWvtXSbLW/sMYs0rS\n6fJezwvW2sYOnqttKLgxZqSke+QF+b/ntvWEMWazMebfJB2U2+a2TrZ1r6R7jDFjJT0o6dsdDElu\nbwj6OHkBVvIOHPzWWtuSu/xTSVcbY8K5x7Y+bk3u3/vyLk/N/T5N0onGmM/kLg+R12N8i6TRxphK\neeH5RkmX5UYTTJX0KXmjHjp6fklakfdaHEk/kVQhr7e/Iw9aa1/N/f5/kp7vop2t8p+ru5qstU3G\nmGmSphtjDpH0kVwbJW9UxE+NMUfLG+2whvOyAWDwoMcaAEpLa6/1J+T1hOYLSHrIWnts64+kSZJe\nNsb8UNJ3JW2QNyT8Ae0cNFvyfnfVxZDjVrne8MO1I9ztidQu26rMDTPe9fmj3djWQ5LKjDFnyuv1\nXdDF/dvbfwa144B1R6G6lSNJ1tpN8nrZP2uMmSVJxpgL5PUkZ+UNSf51B8+n3DaekTRB0v9KGi/p\naWPMqV08/07tyPs9/3JA3utpvS6Rd5s66CEOSJqVVz+nyOvVdyXdJS/QnizpdnkHcWZLWp07r7yr\n589/T1159ftreYG5I/ltDORdbredefft6u+3qxMlvWiMGS2v93qMvHB+Tesdcu/Xr+X1VH9Ke3Z+\nPwBggCNYA0BpuUPSHHlhbtdJwB6R9LHc+c4yxpwr6W+SYvIm7fofa+2f5fV2ny0vSO6ptuBkjBki\n6X8k3WOtfbMH23pQ0iXGmEhuaO2vJV2ca9/xuecoz7W9PWl558EqF/x+KS+k/dlam+ziuZ/0Nm9O\nzD3PkfIC+aPq3kGFtuHc1tq18obg/3fuQMNZku6y1t4m6VlJ1drxXu+6bccY8wNJ11prl0j6D0kv\nyxtVsKful/SpXBskL2g+lvdedPa6Wm+7X9LXjDGOMSYibxb1y3O31Un6lrze/JSkh+Wd77+oh8//\ntKRrJR1ijPlsB+36qDHmwNzvX5S0tBvt7Mxu70Gu13u8vIMxJ0jaaK39vrV2uaTpufu0Pu7/5P09\nj8s9JwBgkCBYA0BpcCVvqLakf0h61Vq7dZfbXpY36dJ8Y8zf5E0gNt1a2yzpe5JuMcY8KW+Y9CJJ\nh/SgHa3n+D4rL5xuk3d+8k7tVDvnRbfze2vwfFbSC/LOmb5V0p8lNRhjXpPX87uqg7bUS7rTGNN6\nru8f5U1ydVsn7W99rzbJ6239mTHmhdxzXmatfb2dtnfHLfLOW79G3gGC03LnQN8jabmk8blwtuv7\n4Mo7X/gjxpgXJf1V3tDseXvw3K3b/I28gxVPG2P+IW8Y88fbuV97v7de/oq8ycxeyP28pB3nGD8s\nb8K45bnL98ubCO2uHjy/JCl3GsBl8upqQjuv7S1Jv89tb7y8Aw9dtbOzv50r6aJcDT+X+39ytqTT\ncwcA7pf0ljHGGmNWyOvlf1e5/yvW2gZ5f6N5HfT4AwCKlOO6g2XlDQAAes4YM1fSpdbaCwrdFviX\nmxX8ImvteYVuS6vcOfVPS5pirX27q/sDAIpHl5OXGWOulDeUKSzp59baP/R5qwAA6Ee55ZwqJdUU\nuCnoPQNq3W5jzOfkDfn/PqEaAAafTnusjTGnS/qatfbC3Hlq37LW9mS2VQAAAAAABqWueqw/Jm+W\ny3pJwyR9s++bBAAAAABA8egqWFfKWzJimry1NJdKOqyvGwUAAAAAQLHoKlhvkvSKtTYt6VVjTNwY\nMzI3G+puXNd1HadbS5cCAAAAADDQ9CjQdhWsV0r6qqT/MsYcIG9pis0dtsBx1NCwvSftAIpWZeVQ\n6h4lh7pHqaHmUYqoe5SiysqhPXpcp+tYW2vvlvS8MeZpecPAL7fWDpgZNgEAAAAAKLQul9uy1l7R\nHw0BAAAAAKAYddpjDQAAAAAAOkewBgAAAADAB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8EawAA\nAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWAN\nAAAAAIAPBGsAAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4Q\nrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADA\nB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAA\nAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAAAHwgWAMAAAAA4APBGgAA\nAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgD\nAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8E\nawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPgQ6uoOxpjnJH2Qu7jGWvuZvm0SAAAAAADF\no9NgbYyJSZK19qP90xwAAAAAAIpLVz3Wx0gqM8bcn7vvVdbap/q+WQAAAAAAFIeuzrFukvRja+05\nkr4o6c/GGM7LBgAAAAAgx3Fdt8MbjTERSQFrbTx3+SlJM621b3fwkI43BgAAAADAwOb05EFdDQX/\nlKSjJf27MeYAScMkvdvZAxoatvekHUDRqqwcSt2j5FD3KDXUPEoRdY9SVFk5tEeP6ypY/0bS74wx\nj+cuf8pam+3RMwEAAAAAMAh1GqyttWlJl/ZTWwAAAAAAKDpMRAYAAAAAgA8EawAAAAAAfCBYAwAA\nAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsA\nAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFg\nDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+\nEKwBAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAA\nwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAAAHwgWAMoOoF1axX7zf8q9NenCt0UAAAA\nQKFCNwAAuiPwztuKLq1TtL5W4eeebbs+PusiNV1/g7L77lfA1gEAAKCUEawBDFhOQ4Oid9UrWl+r\nyJOrJUluMKjk6WcoefY5it45T7FFdypy3z1q/uaVavnsF6RwuMCtBgAAQKkhWAMYUJyt7yt6zzJF\n6xYpvOIxOdmsXMdRcuJkJWbMVGLaDLmVlZKklk9/XrE7/qDym76riuuvUuzPf1DjzbcoNeW0Ar8K\nAAAAlBKCNYCCcxq3K3LfPV7P9CMPyUmlJEmp409QoqpGiQurld3/gN0fGAwq/slPKzF9hspvukGx\nP/1Ow2umKz5jppq+c6OyB47u51cCAACAUuS4rtub23MbGrb35vaAAa+ycqio+x5oaVHkwQcUq69V\nZPl9cuJxSVL6yA8rXl2jxIyZyo4bv0ebDP39eVV8++sKP/uM3LIyNf3nN9XyxS9J0WgfvIDSRt2j\n1FDzKEXUPUpRZeVQpyePI1gDPrHT2QPJpCKPPqRoXa0i992jQFOjJCl9yKFKVM9SoqpGmUM/5O85\nsllFF8xTxfeuVWDTJqUPOliNN/1IqTPO9t9+tKHuUWqoeZQi6h6lqKfBmqHgAPpWOq3wqhWK1tcq\nevdSBbZulSRlxo5T82c+r3hVjTJHHiU5PfoM210goMTcjyt53gUq+9FNGvKb/9XwuTVKnHuBGm+4\neY97wQEAAICu0GMN+MTR3HZkswo//aSidYsUvategU2bJEmZ/fb3JiCrrlH62ON7L0x3IvjyS6q4\n6puKPLFKbiym5i/9h5q//J/SkCF9/tyDGXWPUkPNoxRR9yhFDAUHCoSdTo7rKvS35xStq1V0yWIF\n331HkpTdZx8lplcpUT1LqZNPlQKBgrQtunihyr9zjYIb3lNm7Dg13vADJc89v1/C/WBE3aPUUPMo\nRdQ9ShFDwQH0P9dV8B8vK1Zfq2h9rYLr10mSssP2UssllyoxY6a39FWowB81jqNEzRwlzzlPZT/5\nkYbc9gvt9cmLlTzjLDXe9CNlDjqksO0DAABAUSNYA9hjwddf886Zrq9V6FUrSXLLyhWfOVuJ6llK\nnn7GgJyJ260Yqqbrb1D8kktVceU3FXn4QY2Yeopa/u3LavqPb0jl5YVuIgAAAIoQQ8EBn0plmFTg\njfWK1i9WdMlihV/8uyTJjUaVPOscxatrlDzrHKmsrMCt3AOuq8iypaq47koF335LmQMOVOP3blJy\nehXDw7uhVOoeaEXNoxRR9yhFDAUH0OsC772r6NI6RetqFX72r5IkNxRS4uxzlKiqUfLc8+UOHVbg\nVvaQ4yg5fYa2nHGWyn72Xyr7+a3a67OfVHLKaWq86cfKmMMK3UIAAAAUCYI1gJ04mzYpumyJ1zO9\neqUc15UbCCg55XQlqmuUuGC63BF7F7qZvae8XM3fvlbxOZeo4porFH3wAY346ES1fPaLav7mt4v3\nwAEAAAD6DcEagJwPtipy792K1S1S+PFH5WQykqTUyacqXlWjxPQquaNGFbiVfSt70MHa9pdFijxw\nryquvkJlv/65oosXqun6G5SYdRHDwwEAANAhzrEGfCra84+amhR94F5F62oVeXi5nGRSkpT6yLFK\nVM1SYka1sgeOLnAjCyQeV9kvblXZrT+RE48rdfKp2n7Tj5X58NGFbtmAUbR1D/QQNY9SRN2jFHGO\nNYCuxeOKPLTcm9H7gXvltLRIktKHH6lEdY3iM2YqO+GgAjdyAIjF1Pz1KxSfPVcV11+t6N1LNeLs\nqYpf9hk1ffsaucNHFLqFAAAAGEAI1sBgl0op8vgjXs/0PcsUaPSOPKcPOliJqholqmqUOezwAjdy\nYMqOHadtv7tD4UceUsXV39KQ396u6JLFarrmu4pf/AkpECh0EwEAADAAMBQc8GlADpPKZBRevdLr\nmV62RIH33/euHj3GC9PVNUofdTTnDe+JZFJDbvulyn/yQznNTUodd7wab75F6WOPL3TLCmJA1j3Q\nh6h5lCLqHqWop0PBCdaATwNmp5PNKvTMXxWtX6To0noFN26QJGVG7avEjGolqmqUPuEkwrRPgXff\nUfl3r1Fs8SK5jqP4Jz6ppquul7vPPoVuWr8aMHUP9BNqHqWIukcpIlgDBVLQnY7rKvTC3xStq1V0\naZ2Cb70pScruvbcS06qUqK5R6pSJUjBYmPYNYuFVK1Rx5TcU+ucryg4frqZvX6v4Jz9dMu81X7ZQ\naqh5lCLqHqWIYA0USCF2OsF/vuL1TNfVKrR2jSQpO3SYkudPU7y6Rqkpp0vhcL+2qSSlUhryu9tV\n9sObFNi+TamjjlbjD36i9EknF7plfY4vWyg11DxKEXWPUtSns4IbY0ZJelbSmdbaV3vyRAD8Caz5\nl2JLFitaX6vQK/+QJLllZYpX1ygxo0bJM86SYrECt7LEhMNq+fzlilfNUsUN1yl25180YtrZis+5\nWI3Xfk/uvvsWuoUAAADoB10Ga2NMWNJtkpr6vjkA8gXeelPRJXWK1tcq/PfnJUluJKLEedOUqK5R\n4uxzpfLyArcS7qhR2v6zX6vl0k+p4spvKLZgniL3LFPzt65Uy2e+wOgBAACAQa47PdY/lvQrSVf2\ncVsASHI2bFB0Wb1idbUKP/2kJMkNBpU482wlZsxU8vxpcoftVeBWoj3pk07W1gceVexPv1f5Td9V\nxXVXKfaXP6nxph8rNXlqoZsHAACAPtJpsDbGXCapwVr7gDHmSklMJwz0AWfLZkXvvsvrmV61Qk42\nK9dxlJw81Vse64ILS27W6aIVDCp+2WeUmF6l8pu+p9gdv9fwmdMUr5qppu98X9kDDix0CwEAANDL\nOp28zBjzmCQ39/MRSVbSDGvthg4e0qszoQGD2rZt0pIl0vz50gMPSOm0d/2pp0pz50qzZ0v771/Y\nNsK/Z56RvvQl6amnvGH7114r/ed/SpFIoVsGAACA3fXtrODGmEckfaGLycuYFRwlZ49mzGxuVnT5\nfYrW1Sry0ANyEglJUuroj3g90zOqlR0ztg9bi4LIZhWb/2eV33CdAps3K33wIWr8/o+UOuOsQres\nx5gpFqWGmkcpou5Rivp0VnAAPiQSijzykLc81n33ymn25gFMf8goUT1LiaqZyhx8aIEbiT4VCCh+\nyaVKnD9NZT+6SUN+e7uGz52pxHnT1HjDzcqOHVfoFgIAAMAH1rEGfGr3aG4qpfCKxxSrr1XknmUK\nbPtAkpQZP6FteazM4UdIDtMWlKLgSy9q6JXfUPipJ+TGYmr+ytfU/O9flYYMKXTTuo1eDJQaah6l\niLpHKeppjzXBGvCpbaeTySj81BOK1tUquqxegc2bJUmZAw5UYsZMJaprlD7mWMI0PK6raO0ClX/n\nGgU3blBm7Hg13vgDJc85ryhqhC9bKDXUPEoRdY9SRLAGCsF1VbnmH2r+3R8VXVKn4Ib3JEnZkZVK\nzKhWvGqW0ieeJAUCBW4oBipn+zaV3fJDDbn9V3LSaSXO+piabvyBMgcdUuimdYovWyg11DxKEXWP\nUkSwBvqK6yqwcYMCa9cquG6NguvWej/r1yq4do0CW7ZIkrLDhysxbYYSVTVKTZwshZjCAN0XtP9U\nxVXfVGTFY3IjETVf/hU1f/Xr3kziAxBftlBqqHmUisDaNYotWaxo/WKF1q1RNhyRwiG54YgUjsiN\nhHP/RqRw2Ps3FG7/+nBEbjgkhSNSJCI3HM79G5EiYbmhcPvXh3PbyL+cf79QeKfrFQoVxWgvFAeC\nNeBHOq3Am2/sCM35P+vXymlu3u0hbjiszJixCk2aqA/Ou1DJqR9lCSX447qKLFuiiuuuUvDtt5Q5\ncLQav3eTktNmDLgvDIQMlBpqHoNZ4J23FV1Sp2j9IoWff06S5EYico48UulESkol5SSTUirl/ZtO\nyUnmrk+lCtx6j9sazHNBfreAHwnnDgC0c304F9rbu76LAwc9OUCgYLDQbxc6QbAGutLUpOD6dXmh\neUfvc+DNN+RkMrs9JFteoez4CcqMn6DMhIO8f3M/2QNHS8EgX7bQ+5qaVHbrT1T2y5/KSSaVnHK6\nGm/+sTIfMoVuWRvqHqWGmsdg42zcqOhd9YrV1yr81BOSJDcYVGrq6YpXz1LyvAs08pAxXde960qp\nlJRMykmnpGRKTirpXW69PpWUUum865M73y+dbv/6VMrbdiq5I8i3BvwOr289ANAa/HfZZjvf9/qb\nGwi02/OeH8zdYcOUraxUdtS+eT+jlK30fndHjiSg9xGCNeC6crZs2Xm4dmtwXre27fznXWVHVu4I\nzDuF54O8D60uegr5soW+ElzzusqvvkLRh5bLDYXU8vnL1fyNK+RWDC1006h7lBxqHoOB8/4WRe9Z\npmhdrcIrH5OTzcp1HKUmTvYmWp02w/vukzMo6z6b3RHA88J/W1jfNeCnknJS+cG/swMG+dfnb2/n\n8L/j+ds5CJFOSYmkAo2dv+9uICB37312BO788N36e+UoZUeNkjt8xIAb+TaQEaxRGrJZBd55e/fQ\n3Pp7blmrfG4goOzoMcqM2z08Z8eP9x1SBuVOBwOH6ypy/72quObbCr6xTpl991PT9TcoUTOnoDtJ\n6h6lhppHsXIatyty792K1tcq8ujDbUO3U8efqER1jRIXViu73/7tPpa6L6BUSoHNm7x5fjZuUGDj\nRgU2bpDTsLHt97brt2/rdFNuJNIWsneE7sq23u/8QD5Q53bpTwRrDB6JhIJvrG/rec4PzsE31stJ\nJHZ7iBuLKTNu/E69zZkJE7xh3KPH9um5z+x00C9aWlT2i1tV9tP/khOPK3nKRDXefIsyRx5VkOZQ\n9yg11DyKSnOzIg89oFhdrSIP3i8nHpckpY46WomqGiVmVCs7bnyXm6Hui0RzswINubDd0LBbGA80\n5AXzdr5H58uWV3i93JWjOu8NH1k5aOcWIlijqDjbPtg9NLf2Or/9lpx26jI7fPguwfmgtvOfs/vu\nV7AlrdjpoD8F3livimuvVPTeZXIDAbV8+nNqvuJquXsN79d2UPcoNdQ8BrxEQpFHH1a0bpEi99+r\nQFOjJCl96IeUqJ6lRFWNMoccukebpO4HGdeVs33bLj3eG3a67LQG84aNcrLZTjeXHTFil2Hneb3h\neeeGu/vsU1RLzxKsMbB0c4mqXWX2PyBvmPbOw7bd4SP6+UV0DzsdFEL44eWquOpbCq35l7IjR6rp\nmu8qPvfj/bbjou5Raqh5DEjptMIrH1e0vlbRu+9S4IOtkqTM2PFKVNcoXlWjzBFH9vjUIeq+hGUy\ncrZs2T2At/WM54Xz99/vdFNuMKjsyMq2Xu/2e8Nztw0dVvDzwQnW6H8+lqjaeabtXHgeO04aMqQA\nL8QfdjoomERCQ277hcr/60dympuVOv4ENd58i9IfOa7Pn5q6R1FzXSmTaWeSol0nL9oxodDwyr3U\nMM5IFRWFbj1KXTar8FNPKFq3SNFlSxTYtEmS1zmRmDFTieoabz/QC+GEz3p0SyKhwKaGvMC9sd3e\n8MDGjXKamzrdlBuN7jYD+m7nhud+76vcQLBG3/C7RNWuk4XllqgaTNjpoNAC77yt8u9crVj9YrmO\no/gnLlPTVdd5Q6/6CHWP3WSzHSyj0/nyO7utj5u/fE5Hy+nsuo7uLo/vcJbeZCrXnmS7pxx1xQ2F\nlD7mWKUmT1Vy4mSlTjqFiX7QP1xXoeefVbSuVtGldQq++44kKTtypBLTq5SonuXVYy+PWuKzHr2u\nsXH38N2Qfz74jtu6WiM9O3TYbueAt9sbPrJSCoW63USCNXqmN5ao2ik8d2+JqsGEnQ4GivDKx1Vx\n5TcUsv+78Ie+AAAd+0lEQVRUdsQINV15neKXXtYnB7Oo+wLIZBTYuEFqaelyzdcuQ2V7S8okk1I6\n3U647cZjU6mBsTas40jRaG5N2Ly1YUOhtrVh264PR6RwSG7E+z1//VhFwrn1ZXdcX55JKPXwIwr9\n7fm21+qGQkofe7ySk6coNXGKUieeLJWVFfhdwKDhugq+/JJiSxYrWler4BvrJEnZvYYrMe1CJWbM\nVGry1D0KDHuKz3oUjOvK2fr+7r3fDbv3hjubN3V6sNR1HLn77OP1gO86O/quwXz4CFXuuxfBGh3o\nbImqtWvanaJ/tyWq8sJzbyxRNZiw08GAkkppyG9uU9mPblagcbtSHz5GjT+4RekTT+7Vp6Hu+0hL\nS25VhNwIobV5qyO8+UaXR+/7gtsaVMOhHUE1P4SGQ14wjUSkcHhHUI2EpVC4/etbg2z+5fz7hcI7\nB+PW59vt+vygHO7TEVGtNe80blfo6ScVWblC4dUrvKCdm+DHDYeVPu4EJSdNVmrSVKVOOKkoT3FC\nYQVff80b5l1fq9Brr0ryRgMmzz1fieoaJU8/s99mY+azHkUhnW5bmmz35cjyh6NvbHdp3nxuOCwn\nmSRYl7TOlqhav87rgdjF7ktUTdgx03YfL1E1mLDTwUDkbNigihuuU2zBPElS/KJL1Hjt9+SOGtUr\n26fue87Z+v6Oz+e1a3b+vM4N79xVdp99vM/oMWPlllfsFEA7Cq4Kh3fvhW33+o6Dq4LBkhqB1JmO\nat7Zvk3hp55QuDVov/D3HUE7ElHquBOUmjTF+znhJCkW6++mowgE3livaP1iRetrFX7pBUne97Tk\nWecoXl2j5JkfK8hoCD7rMejE43m93u30hm/epPCTqwnWpcZpaFCsbqGiC+9U6IW/dWuJqvyZtgu5\nRNVgwk4HA1noqSdVceU3FH7pBWWHDlPzFVep5dOf9z10kLrvRDarwIb3dgnOefNTbN2620Ncx1H2\nwNE7TqsZN0GZCRPa5qtwhw4rwAtBvu7WvLPtA4WfXK3wqpUKr1qh0It/b9s/u9GoUsefqNTEyUpN\nnqrUcScQtEtY4N13FF1a54XpZ5+R5PWWJT96phJVNUqee37BRwjyWY9SxDnWpSIeV/T+exRdME+R\nhx+Uk8nIDQaVPuEkpQ86eJfZtgfuElWDCTsdDHiZjGJ/+K3Kb75BgQ+2Kn34EWq8+RalJk7u8SZL\nvu6TSQXfesMLzWt3maNi/To58fhuD3GjUWXGjtt5QsfcQc/MmLFSNFqAF4Lu6mnNOx9sVfjJJxRe\n+bjCq1cq9NILO4J2LKbUCSftCNrHHk8dDHLOpk2KLlviheknVslxXbmBgFKTT1OiukaJ86fJHbF3\noZvZpuQ/61GSCNaDmet6yyosnK/okrq2cwNSxxyrxOyLFK+eLbeyssCNLF3sdFAsnE2bVH7z9xS7\n4w9yXFfxmbPUdP2Nyu5/wB5vqyTqvrFxpyHb+csJBt56s224b77ssL12Pq0m7ye7/wGMEipivVXz\nzvtbvKC9eoUiK1co9PKLbbe5sZhSJ56s1KQpSk6covRxx3Na1iDgfLBVkXuWKVa3SOEVj7VNfpc8\nZaISVTVKTJvRa6fp9LaS+KwHdkGwHoQCa/6l2ML5ii28s20myMz+Bygx6yLFZ89V5rDDC9tASGKn\ng+ITeu4Zb3j488/JLStX09evUMsXLt+jL/CDou5dV86mTTtNErbTJI+bGtp9WGbf/XY6rSb/xx2x\nN+ckD1J9VfPOls0KP7F6R9B+5eW229whQ5Q68RSlJk1WctJUpT9yLEG7WDQ2KvrAvYrW13ojDHNz\n3aSOPU6JqllKXFjlLUE6wA2Kz3pgDxGsBwnn/S2KLqlTbME8hZ95WpLklpUrMe1CxedcrNSkKYNu\nHehix04HRSmbVWzeHSq/8XoFNm9W+pBD1XjTj5U6/YxuPbxo6j6TUeDtt9oPzuvWKtDUuNtD3FDI\nWxWhLTznBehx41lOqUT1V807mzcr/MQqRVblho6/8o+229yyMqVOOkXJSVOUmjhZ6Y8c582GjoGh\npUWRh5YrWl+r6PL75LS0SJLSRxyleHWNEhdWKzvhoAI3cs8UzWc90IsI1sUsmVTkoeWKLZinyPL7\n5CSTch1HqamnKz7nYiXOny6Vlxe6legAOx0UM+f9LSr/4fcV+/1v5GSzSlxwoRq/d5OyY8Z2+rgB\nVfctLQquX7djiar8ZQU7WKLKLStrdznBzPgJyo4e06frwqI4FarmnYYGhZ9cpciqFd5kaPafbbe5\nZeVKnXyKkpOmKjVpstLHHEvt9rdkUpHHH1G0rlaRe+9WoNGrkfTBh3jDvKtqlDGHFbiRPTegPuuB\nfkKwLjauq9Dzzyq2YJ6i9bUKbNkiSUofdrjicy5RomZ2j857RP9jp4PBIPjiCxp65TcUfvpJuUOG\nqPkrX1Pzv3+1wxmL+7vuna3v79TrvEdLVI2bsFvvsztqFEO2sUcGyme9s3GjIk94M46HV69U6FXb\ndlu2vEKpU05VauIUpSZPUfrDxxC0+0Imo/CqFV7P9LIlbTP9Z8aMzYXpmUofdfSg+IwZKHUP9CeC\ndZEIvPmGYovuVHThfIVef02SlB1ZqXjNHCXmzB00H8SlhJ0OBg3XVXThfFV891oFGjYqM268Gr//\nQyU/dt5ud+31us9mFXjv3V2CczeXqMpbUpAlqtBXBupnvbNhgxe0W9fRzn23kKTs0GE7gvakyV7Q\n5nSynslmFfrr04rVL1J0ab0CDRsleXMuJGZUK1FVo/TxJw6673ADte6BvkSwHsCc7dsUvWuJogvn\nK7JqhSRv5s/EuecrMediJU8/kyPKRYydDgYbZ/s2lf34Bxpy+6/kZDJKnH2OGm/84U7nBvao7pNJ\nBd9cv3uPc3eWqMobss0SVSiEYvmsD7z3rsKrV+bW0X5coTX/arstO3SYUqdOVKp16PiRHyZod8Z1\nFfr784rW1Sq6tE7Bt9+SJGX33luJaVVKVNcodcrEQf0eFkvdA72JYD3QpNMKP/6IN9T7nmVtXxiT\np05SYs7FSkyfIXfYXgVuJHoDOx0MVsF/vqKKq76pyMrH5UYiav7SV9X8la9LZWUd1r3TuF2BtWt3\nmyisW0tUta7rnH++M0tUYYAo1s/6wLvvtA0bD69aodDaNW23Zfca7gXtid6s45kjj+L/m6TgK/9Q\ntH6RYnW1Cq5bK8k7KJG8YLriVTVKTTmtZCaNK9a6B/wgWA8QwZdeVGzBPMVqF7QNE0ofdLAScy5W\nfNZFyo4dV+AWorex08Gg5rqKLq1T+XVXKfjuO8qMHqOm62/QsCMO1bbnX9rzJaramSyMJapQDAbL\nZ33g7bfaQnZk1QoF169ruy07fLhSp072lveaOEWZI44smaAdXPO6ovWLFa2vVeifr0jyJjlMnHu+\nEjNqlDzjrJIcITNY6h7YEwTrAgq8966itQsVWzCvbf3J7IgRSlTVKD7nYqWPO4EvjYMYOx2UhMZG\nld/6Ew355U/bn2U7GFR2zNidz3duDdAsUYVBYLB+1gfeerOtRzuyaoWCb6xvuy07YoRSp05WcvIU\npSZOUeawwwdV0A68+YaiS+oUra9V+IW/SfJOP0me+TElqmuUOOuckl+VZbDWPdAZgnV/a2pS9N5l\nii2cr/Bjj8jJZuWGw0qefa7is+cqedbHSvLIZilip4NSEvzXaxpy+681ZMQwbR914I7znlmiCoNc\nqXzWB95Y3xayw6tWKPjWm223ZffZxwvakyYrNWmqt4xUkXUcOBs2KHpXnWJ1tQr/9SlJ3tr1ydPP\nUGLGTCXPu4BT9fKUSt0D+QjW/SGbVXjVCsUWzlfkriUKNDVKklLHn+itNz2jWu7e+xS4kehv7HRQ\niqh7lJqSrHnX3RG0Vz7uBe133m67OTtypJITpyg1cbJSk6Yo8yEzIIO2s2WzosuWej3Tq1bIcV25\njqPU5Kne8lgXTOf7WwdKsu5R8gjWfSj4qlVs4XxFF93ZNiNkZuw4xWfNUWL2XGUOPrTALUQhsdNB\nKaLuUWqoeXlBe/26tt7s8KoVO60jnx1ZqeSkKUrlfjKHHFqwoO1s+0CRe+9WtL5WkccekZNOS5JS\nJ56seHWNktOrlN13v4K0rZhQ9yhFBOte5mza5M0IuWCewn97XpI3I2Tiwiol5lys1MmnDqrzjNBz\n7HRQiqh7lBpqvh2uq8DaNTsH7Q3vtd2cGbWvUpMme+toT56izEGH9G3QbmpSdPl9itbVKvLwcjmJ\nhCQpdcyxXs/0jGrvtBV0G3WPUkSw7g3xuCLL71NswTxFHlouJ52WGwwq+dEzvSWyzjlfGjKk0K3E\nAMNOB6WIukepoea7wXUVXPN62xra4VUrFdy4oe3mzL77eUE7t452ZsLB/oN2IqHIww8qWr9I0fvv\nldPcLElKH3a4F6arZnqBHj1C3aMUEax7ynUVevopb73ppXUKfLBVkpT68DFKzJmrePVsuaNGFbiR\nGMjY6aAUUfcoNdR8D7iugv96XeGVjyu8eoUiK1fstCRfZv8D2s7PTk6aouz4Cd0L2qmUwiseVax+\nsSL3LFNg2weSpPSEg7zZvGfUKHP4EX31qkoKdY9SRLDeQ4G1axRbOF+xRXcquG6tJCmz3/5KzLpI\n8dlz+UBGt7HTQSmi7lFqqPle4LoKvvZqLmivVGT1CgU2bWq7OXPAgW3nZycnTVF27LgdQTuTUfjJ\n1YrW1Sq6rF6BLVu8qw8crcSMmUpU1yh99EcG5ORpxYy6RykiWHeDs/V9RZfWe+dNP/2kJMktK1Pi\nggsVnz1XqSmnScFggVuJYsNOB6WIukepoeb7gOsqaP+p8KoV3nnaq1e0BWZJyoweo9TEyXKHDlVk\n2dK287ezlaMUn1GtxIwapU88iTlv+hB1j1JEsO5IKqXIww96503ff4+cZDK3xMJpis+Zq8QFF0oV\nFYVuJYoYOx2UIuoepYaa7wfZbC5oP67IqpVe0H7/fe+mESOUmDZDiaoapSZOpiOkn1D3KEU9Ddah\n3m7IgOC6Cv39eUUXzFOsbpECmzdLktLmMMVnX6zErDnKHnBggRsJAACANoGAMocfoczhRyj+2S96\nQfuVfyjw/halTjpFikQK3UIA6NCgCtaBt99SdNGdii2Yp9Brr0qSsiNHqvnz/6bEnIuV/vAxnHsD\nAABQDAIBZY48SplCtwMAuqHog7XTuF2RZUsVWzhf4ZWPy3FdudGo4jNmKjFnrpKnnymFw4VuJgAA\nAABgkCrOYJ3JKPzYI4otnK/oPXfJaWmRJCVPmeitNz19hty9hhe4kQAAAACAUlBUwTr48ktemK5d\n0DYzZHrCQUrMnqv4rIu89Q8BAAAAAOhHAz5YOxs2KLZ4oXfe9MsvSpKyw4er5ZOfUXzOXKVPOInz\npgEAAAAABTMwg3Vzs6L33e2tN/3ow3KyWbmhkBLnXqD4nIuVPPscKRotdCsBAAAAABhAwTqbVfiJ\nVYoumKfoXUsUaPTWzEsdd7y3RFZVjdx99ilwIwEAAAAA2FnBg3Xw9dcUXThPsYV3KvjWm5KkzOgx\navrcF5SYfbEyhxxa4BYCAAAAANCxggRrZ/NmRetrFVs4T+HnnpUkZSuGquWSS5WYPVepUydJgUAh\nmgYAAAAAwB7pv2CdSCiy/H7FFsxT5MH75aTTcgMBJc48W4nZc5U49wKprKzfmgMAAAAAQG/o22Dt\nugo987RiC+YruqRWga1bJUmpo472wvTMWcruu1+fNgEAAAAAgL7UJ8E6sG6tYovuVHThfIXWrpEk\nZfbdT82Xf0Xx2XOVOfKovnhaAAAAAAD6Xe8G6//7P+31m98p8uRqSZI7ZIjiNXMUn3OxUlNPl4LB\nXn06AAAAAAAKrXeD9ec+p7DjKDnlNMVnz1Vy2oVyK4b26lMAAAAAADCQ9G6w/tnPtGXSGcqOHtOr\nmwUAAAAAYKDq3WD9pS8p27C9VzcJAAAAAMBAxmLRAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEA\nAAAA8KHLycuMMUFJt0v6kCRX0hettS/3dcMAAAAAACgG3emxniYpa62dLOkaSd/v2yYBAAAAAFA8\nugzW1tolkr6Quzhe0vt92SAAAAAAAIpJt9axttZmjDG/l1QtaVaftggAAAAAgCLS7cnLrLWXyTvP\n+nZjzJA+axEAAAAAAEWkO5OXXSpptLX2ZkktkrK5n3ZVVg7tvdYBRYK6Rymi7lFqqHmUIuoe6B7H\ndd1O75Drnf69pP0khSXdbK29q4O7uw0N23u1gcBAV1k5VNQ9Sg11j1JDzaMUUfcoRZWVQ52ePK7L\nHmtrbYuki3qycQAAAAAABrtun2MNAAAAAAB2R7AGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAA\nAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwB\nAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeC\nNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4\nQLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAA\nAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAA\nAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsA\nAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFg\nDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+BDq7EZjTFjSbyWNkxSVdKO1\n9q7+aBgAAAAAAMWgqx7rj0tqsNZOlXSupJ/3fZMAAAAAACgenfZYS1ooaVHu94CkdN82BwAAAACA\n4tJpsLbWNkmSMWaovJB9dX80CgAAAACAYtHl5GXGmDGSHpb0R2vt/L5vEgAAAAAAxcNxXbfDG40x\n+0p6VNLl1tpHurG9jjcGAAAAAMDA5vToQV0E61slzZZk864+z1ob7+AhbkPD9p60AyhalZVDRd2j\n1FD3KDXUPEoRdY9SVFk5tEfBuqtzrL8q6as9ahEAAAAAACWgy3OsAQAAAABAxwjWAAAAAAD4QLAG\nAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I\n1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADg\nA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAA\nAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAA\nAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwB\nAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeC\nNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4\nQLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAA\nAB/2KFgbY042xjzSV40BAAAAAKDYhLp7R2PMtyR9QlJj3zUHAAAAAIDisic91q9LminJ6aO2AAAA\nAABQdLodrK21iyWl+7AtAAAAAAAUHSYvAwAAAADAh26fY91dlZVDe3uTwIBH3aMUUfcoNdQ8ShF1\nD3RPT4K129mNDQ3be9gUoDhVVg6l7lFyqHuUGmoepYi6Rynq6cGkPQrW1tp1kib26JkAAAAAABiE\nOMcaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAA\nAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4QLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAA\nAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAAAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwB\nAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAAAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeC\nNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsAAAAAAHwgWAMAAAAA4APBGgAAAAAAHwjWAAAAAAD4\nQLAGAAAAAMAHgjUAAAAAAD4QrAEAAAAA8IFgDQAAAACADwRrAAAAAAB8IFgDAAAAAOADwRoAAAAA\nAB8I1gAAAAAA+ECwBgAAAADAB4I1AAAAAAA+EKwBAAAAAPCBYA0AAAAAgA8EawAAAAAAfCBYAwAA\nAADgA8EaAAAAAAAfCNYAAAAAAPhAsAYAAAAAwAeCNQAAAAAAPhCsAQAAAADwgWANAAAAAIAPBGsA\nAAAAAHwgWAMAAAAA4APBGgAAAAAAH0L/v727CbGqDuM4/h1DsULLhZsI0Rb92iQUGWa+JBRZEESb\nXLiJpKBFBEUFrgosJKIXJAqK3pCIEBdBSRpmqb0sKqVFDxXRrk1kLgoznRZzpEHyzr3eM/d6Z74f\nGDjn3HP/PItnnvN/5pz/malOSDIHeAlYDhwHNlfVT9MdmCRJkiRJo6CbO9Z3AvOqahXwOPDs9IYk\nSZIkSdLo6KaxvhHYDVBVXwLXTWtEkiRJkiSNkG4a64XAsUn7J5vHwyVJkiRJmvW6aZCPAQsmf6eq\nTk1TPJIkSZIkjZQpX14GHATuAN5LshI40uHcscWLF3T4WJqZzHvNRua9ZhtzXrOReS91p5vGehdw\nS5KDzf490xiPJEmSJEkjZWx8fHzYMUiSJEmSNLJ8CZkkSZIkSX2wsZYkSZIkqQ821pIkSZIk9cHG\nWpIkSZKkPvTdWCe5KcmpJHefcfxIktf7HV86nyTZm2RFsz0vyR9JHpn0+SdJlg8vQqkd55LrSR5K\n8vSgY5Xa0sucJskzSQ4l+SrJ5sFGKrWjl1qfZElz/r7m+JXDilvqR4+1fmuSL5J8nmRdp3HbumP9\nPbBxUgBXAxcBvnJcM80eYE2zvQbYDdwOkGQ+sKSqOv2vd2lUdJ3rSeYn2QE8gHVfo2/KOU2S9cAV\nVbUKWA08luSSQQcqtaCXec2TwItVtR54CvAPqRpl3dT6a4Drq2plc+4LnQZso7EeBw4DS5IsbI5t\nAnYAYy2ML51PJl+AbgNeBS5tcv8GYP+wApNa1kuuzwfeALZi3ddo63ZOcwi4d9L+BcCJgUQotauX\nWv8w8EGzPRf4a1BBSi3rqtZX1TfAhmZ3KfB7p0HbXGO9E7ir2V7BxEVHmmm+Ba5qttcyccHZC9wM\nrAM+HFJcUtu6zvWqOlpVewYeoTR9Os5pqup4VR1NMhd4E3ilqv4ccIxSG3qp9b9V1T9JAjwDPDHg\nWKW2Tdm/VtXJJFuB94GOy5zbaKxPd/XvABuTrAU+a2Fc6bxTVaeAw0k2AL9W1d9MXHRWNz8fDTM+\nqS3mumapruc0SRYx8TvxXVVtG1B8Uqt6rfXNMohdwKaq+mHQ8Uot6al/raotwGXAo0mWne281u5Y\nV9XPwMXAg8Db+DigZq49wBb+exzqAHAtMFZVR4cWldQ+c12z0lRzmiQXAh8Dr1XV1sFHKLWqq1rf\nNNXPA7dW1dcDj1JqWRe1fn2S7c3ucSaW/Jw623htrbE+vcj7XeDyqvrxjOPSTLIXWEVzAaqqE0ys\nuXB9tWaas+Z6kkVJdv7Pd6z7GmWd5jQk2da8Qfl+YBlwX/OG5H1Jlg4jYKkF3db655hYW/1Wk/Mv\nDyVaqX/d1vr9wJwkB4BPge1V9cvZBh0bH3cOJEmSJEnSuWrz5WWSJEmSJM06NtaSJEmSJPXBxlqS\nJEmSpD7YWEuSJEmS1Acba0mSJEmS+mBjLUmSJElSH2ysJUmSJEnqg421JEmSJEl9+Be67afUJJdG\neAAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "plecture_week_1 = lecture.icol([0,1,2,3])\n", + "plecture_week_1_mean = plecture_week_1.mean()\n", + "w1_lectures = plecture_week_1_mean.mean()\n", + "\n", + "plecture_week_2 = lecture.icol([4, 5, 6, 7])\n", + "plecture_week_2_mean = plecture_week_2.mean()\n", + "w2_lectures = plecture_week_2_mean.mean()\n", + "\n", + "plecture_week_3 = lecture.icol([8, 9, 10, 11])\n", + "plecture_week_3_mean = plecture_week_3.mean()\n", + "w3_lectures = plecture_week_3_mean.mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_weeks = [w1_lectures, w2_lectures, w3_lectures]\n" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 17 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pw = np.array(python_weeks)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 18 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python = pd.DataFrame({\"Week 1\":pw[0:1], \"Week 2\":pw[1:2], \"Week 3\":pw[2:3]})" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 19 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python.plot(kind='bar', ylim=(0, 6))\n", + "plt.title(\"Average Python Lecture Difficulty Per Week\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 20, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEGCAYAAACn2WTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGTxJREFUeJzt3Xl4VeW59/FvBqLGBAw2tkCpWoUbqwcnJrGTr+LBcxTt\ncDxqRVFsQVRQHIoTfSv62tYjHRQFB47Wc3msWrWpVnFAO6BYEQT0HG+KVgyCmpooJEHGvH88K7iB\nJHsD2Xs/JL/PdeW69l577bXutYffetaz1n5S0NTUhIiIxKkw3wWIiEjrFNIiIhFTSIuIREwhLSIS\nMYW0iEjEFNIiIhErzncBuwIz6wIsAxa6+wn5ricTZvZN4EngTaAJKAA2AD9298fbeN7+wE3u/l0z\n2w9Y7O7lWarxBeAWd/9tOyxrc907XVjLy98PeAtYlEwqBNYDv3T3+5J5fgz8zd3/y8xGAT8G/geY\nCtwFvA/8J9DN3X+6gzUsdvfyHdleM7sHOA6oIXwmuiTb9H13r9neepJlDgb+4O57p0y7H/g28Dl3\nr0+mTQPq3f2HO7CO/cji5zB2CunMfAtYCBxhZv3c/c18F5Shpe5+ePMdM+sPzDGz/dz9o1aesy9g\nOakuBEV7Xaifi7obt3o9vwQ8Z2YN7v6Iu/8oZd6zgCvd/X4zmwnc4e43tGMtO7K9TcBUd5/aPMHM\n/gO4Dfi3HazjFWCTmR3q7gvNrBg4BngeGA48nMz3f4Af7OA6OjWFdGbGAfcDS4GLzex84F3gFHd/\nFcDMHgCed/cZZnY1oSVRCLwDjHP3lUnL8SOgH+GL8SrwU2A3oAfwjLuflyxvFPBDYA3hAz/e3bsk\nj7W4/HQb4e6LzKwR2N/M5gAXufszyTLvBBYDFwG9zOxJYCxQZGa3A4OAvYDL3f2R5OhiKuHLtxF4\nGbjE3evN7B1Ci/FY4EvAb7a3BWVmJwFXAyVAI3CZu89NQuBnwL8SjgxeBC4gtFR7ptT9hruXJcva\nj89aoKOA0UAp8LG7H2tmo4Hzk9fzI+BCd/cMXs93zWwycDnwSNJSXQz0AgYC+5lZT+BkYI2ZdUu2\nZW93v8jM+gIzgEpgE3C9uz+YvH7fSflsvUN4v2uT+4Up2/sU8CfgYHf/XvL40YQjlCMyeKlnEz6D\nmFkv4BbCe9YFeMDdb0xevz8Tjgr2A77u7h8kr8EmM5sFfJPQkPkq4WjjIWAE8HCy3M8TGgglyfq+\nDhQBCwif7dWtrT+1WDM7CHiC8Fn7XQbbt8tTn3QaZvYVYDDwIHAvMBKoAO4GRiXzVBAOI+83s7OA\nQ4BBSavrScIXCkJLptbdD3b3acB44Fp3HwIcDIwws8OTdf4EODb5on1C8l6lWX66bfk2IVBfB24H\nmncIXQlfqHuSaW8l3ToFwO7A0+5+JHApISABrgG+APQHDk3quyllO/d0968DQ4GLzGzfTGpM6ukD\n3ACckGz/GEIIlhJ2mEck6z0EKAdOJQRvat1ttdC/AnwjCehvEFq9X0vWdRPwSKa1EgLpn5LbTUCT\nu08E5hF2LP8BVBFasFew5dHDA4Qd2CHAvwA3mFk52x5hbLEt7r4pZXuHA3cC/2pmeyWzjCG8vy0p\naL5hZnsk2z47mXQfMNPdBxA+88PMrLmF3Qu4zt2tOaBTPEkIaYCTgN8DfwCGJzuUY4FZSd2TgPXu\nfqS7HwasJHzW060fMzuE8FqO7iwBDWpJZ+J84Al3/xiYZ2Z/J3wJZgKvmNlE4HSgKmkNnEhoRc0z\nMwithT1SlvfnlNtnE75cVwIHEVp35YQP/Cx3X5HMdyvwf5Pb6Zaf6gAzW5Dc7kJo/Z/s7p+a2b3A\nj8zsc4RD3d+7+yozK9hqGevc/dHk9kJgn+T2cOAqd98IYGa3AI+lPO93AO6+wsw+BLoT+vUzMYxw\nZDE72UYIO5cDCV/4X7v72mT6acn6v5nhsgEWNfeVElrkBwIvpqyrwsz2St7zdJoIreNMFcDmHXt/\nkh2suy8H+iSPZbyc5Lk1ZvY4cJaZ3QccTziaaOk5l5jZmcn9YuAF4Eoz2xP4BmHbpySP70nYAb9C\nOGp5qZVangZ+kXx2TgT+2d3fN7NlwADC0dYTybwnAt3MbFhyvwT4INkBt7b+vxIaC7OBF9z9+bSv\nTgeikG5D8sE9C2hMwhmgK+Hw+iZgPuFDNwqYkDxeCPzE3WckyygB9k5ZbH3K7b8QDveeIrTUBxG+\nSOvZ8ihnY8rtdMtP9VZqH2oqd//YzB4iHBmcTmihtmR9yu3mE5DNdaQGehFhR9BsTSvPy0Qh8Jy7\nn9Y8Ien/XU4IC1KmV7LtEeHW6yvZ6vHU96AQuM/dJyXLKwB6ZxjQEHaYi9LOta3m7djcSk6OIJaT\nvv6WTCO0njcAD7t7SzuObfqkU9bdNbl5lLt/mkz7HOF9rATWJi3hbSQ7ibeB7wAb3P2d5KEngK8R\nujYuTaYVEro3ZiXrKCMEcHMWtbb+JkK30X+Z2bdSGg4dnro72vY94EOgp7vv7+77A18GygiH2HcS\nDt/2cPfmVsYs4PvJYSuEFvC9KctMbUkdCUxy98eALxJadIXJMo5L+jMh6ZbIcPnbo7nLpcDd5yXT\nNrBl2LZmFjDWzIqTQ9oLCC2q7dVSeM8GjrekSWlmw4HXCF/mZ4EzzKwkWe90wk5mfUrdHwMlSf8l\nhBO/rXkaON3MvpDc/36m25H0KV8D3NzGtjRPT32swN1XE85JjEqW1ZvQv96VcPXFwGT6EMJRxda2\neJ+Sz98m4DJa7+potUZ3XwXMJQnTpP/8z4RusEw8CVxL6Opo9jihEfB+yonqWYTur9T374YM1r82\n2cZzgelm9vkM69rlKaTbNpbQ8tjc2nH3T4BfEVrOVYSz7HenPOcuwodzrpm9TjhcOzvl8aZkOXXA\njcB8M/sLYYfwB+BAd/8bcAkwy8xeIZxobMxw+anavHLC3RcRTkZNT5n8OrDRzOa2sozm+9cTLil7\njXBCqYjPjia2x31mtjrl70Z3/x/ClQAPmNlrwBTgpKR1OIMQbq8SWrArCO/HG811J+/RFcCTZvZX\nQng1171Ff6+7P004kfWMmS0EzqT1UN/DzBYkf68STo5Ocvcnt3pttpa6ztTbZwCnJtvY3Nf6AeGE\n8YSkq+o8Qv926rJg2/cJwjmF99z9jVbqaKvG5nqGmNkiwong/3b3/87geRBC+hDCZ7PZq4QThk+k\nTJtCONm9gPCeFfJZKzvt+t39j4S+/NTvXIdWoKFK45OcTT8LmOLuTckJv8vd/ah2Xs8BhCtH+jYf\nYsquycJVL48S+usfync90n7S9kknJ7VOIhxa3eruO3poLZlbDvQEFpvZBsLh+7ntuQIzu45waD9e\nAb1rS64G+gvhBLcCuoNpsyWdnDGf6O4jkpNoV/iWF+yLiEgWpWtJH09ozT1GOKFxefZLEhGRZulC\nuhLoTbjM7MuEkxv9sl2UiIgE6UL6H8D/uvsGYImZfWpmn3P3f7Q084YNG5uKi4vavUgRkQ6u1d8R\npAvpvxAuq5qaXLO7J2FsgxbV1W3PD69EcquyspyamtX5LkNkG5WVrQ/w1+Z10u7+BLAguda0ijCQ\nj67ZExHJkXa9TrqmZrUCXKKllrTEqrKyvNXuDv3iUEQkYgppEZGIKaRFRCKmkBYRiZjGkxaRnFi3\nbh3V1Zn+34fM9O69LyUlmQy3vetSSItITlRXL2PCTVWUdtsn/cwZaPzkQ355+QgOOKBPq/NMmDCO\nsWMv4KCDDmb9+vWceOJxnH32eZxxxkgALrzwB1x88eUceGDry9jaiBH/TFXVrDbnWb68mquvvpx7\n730g4+W2RiEtIjlT2m0fyip65Wx9AwcOYuHCBRx00MEsXLiAwYOHMnfuHM44YyRr167lgw8+2K6A\nBihI8z+GnnrqCR5++Dd8/HGm/9ynbeqTFpEOa+DAISxc+BoAc+e+yEknnUx9/WoaGup5443FHH54\n+Ifqs2c/y9ix5zJu3HlMn34rAPX19VxzzRWMHz+W8ePH8vbbS7dY9owZ05g69afbrLNr127ceusd\npP8/CZlRS1pEOqw+ffry7rvvALBw4XzGjLmAAQMGMW/eX1m69G8MHjyUVas+YebMO7j77vvYbbfd\nmDJlMq+88jKvvPIyAwYM4pRTvkt19bvceON13HbbXQBMm/ZLCgoKmDjxh9usc+jQr7brNiikRaTD\nKiws5MAD+zB37ot07743Xbp0YciQo5kz508sXbqUU089g+rqZXz8cR2XXTYegDVr1vDee8v5+9/f\nYsGCeTz33DMArF69CoDa2lreemspvXp9MSfboJAWkQ5t4MDB/PrXMzn++OEA9O9/GDNn3kFRURHl\n5eX06NGLffb5PL/4xW0UFRXx+OO/o1+/r1Bd/S7HH38Cw4YNp6bmQ555Jpws7N69O1On3sKFF/6A\nl19+icGD2/W/2m1DIS0iOdP4yYc5X9aAAYP52c/+H5MnXw9AcXEx5eVd6dvXAKioqOC0077HhRd+\nn40bN9GjR0+GDRvO2Wefy403TqGq6lEaGhoYPXpMssRw5vDKKydz6aUXcccd99K1a9cW1pzmDGOG\nNMCSdBoaYCm/dJ1069oaYEktaRHJiZKSkjavaZaW6RI8EZGIKaRFRCKmkBYRiZhCWkQkYjpxKCI5\noas7doxCWkRyorp6GVdUTWbPNv4z9vZoqFnNz0ZcF90oeNOm/ZLFixeyceMGRoz4NieddErmG9UC\nhbSI5MyeleWU99wrZ+vL9Sh48+fPY8WK5UyfPpP169czcuSpHHPMcZSVle3wNiikRaTDGjhwCPfc\ncxennXbm5lHwbr/9Fhoa6nF/c4tR8B588H4KCwvp3/8wxo69kPr6en7yk+tYtSqM2XHxxZfx5S8f\nuHnZM2ZMo6GhfotBlg45pD99+tjm+xs3bqK4eOdiViEtIh1WrkfBKykpoaSkhA0bNnD99T/i5JO/\nxe67775T26CQFpEOKx+j4K1atYprr53EEUccyZlnjtrpbVBIi0iHlstR8Nau/ZSLLz6f008fybBh\nw9ulfoW0iORMQzsOcJXpsnI5Ct5jj/2WFStWUFX1KFVVjwJw1VU/okePnju8nRoFTzoNjYKXX7pO\nunUaBU9E8k6j4O0Y/SxcRCRiaVvSZjYf+CS5+7a7j85uSSIi0qzNkDaz3QHc/ZjclCMiIqnStaQP\nBUrNbFYy71Xu/nL2yxIREUgf0g3ATe5+t5n1AZ40s77uvikHtYlIB6KrO3ZMupBeAiwFcPe/mdlH\nQA/gvZZmrqgopbi4qH0rFGlHle00AptsvyVLlvDiJePpUVraLstb2djIiffOpFevvq3OM2rUKCZO\nnEj//v1Zt24dRx11FOPGjWP06HBqbeTIkVx99dX069cv4/UeffTRzJkzp9XHf/7zn/PSSy9RUFDA\npZdeyqBBgzLfqBakC+lzgP7ABWbWE+gKrGxt5rq6xp0qRiSbdJ10ftXW1tOjtJQvlbXfjrK2tr7N\n9/TQQ4/kj3+cQ48e+zNv3l8ZNOgonn12NiNGnMratWuprn6PvffutV2fi6amplbnX7LkTebNm8+0\naXfz/vsrmTTpUu655/60y2yr8ZDuEry7ga5m9ifgAeAcdXWIyK5i4MAhLFz4GsDmUfDq61fT0FDP\nG28s3mIUvLFjz2XcuPOYPv1WAOrr67nmmisYP34s48eP5e23l26x7BkzpjF16k+3mNa3bz9uvvkW\nAFauXEF5+c7vkNpsSbv7BmDkTq9FRCQPcj0KHkBRUREzZkzjt799kEsuuXynt0G/OBSRDisfo+AB\njBlzASNHnsOYMaM49NDD6dmz1w5vg0JaRDq0XI6CN3/+PF544TkmTvwhJSUlFBcXU1i4cz/sVkiL\nSM6sbGy/iwtWNjayfwbz5XIUvMMOO4LZs5/l/PNHs2nTJr7znVP5whd67NR2ahQ86TR0dUd+6Trp\n1mkUPBHJO42Ct2M0Cp6ISMQU0iIiEVNIi4hETCEtIhIxhbSISMQU0iIiEVNIi4hETCEtIhIxhbSI\nSMQU0iIiEVNIi4hETCEtIhIxhbSISMQU0iIiEVNIi4hETCEtIhIxhbSISMQU0iIiEVNIi4hETCEt\nIhIxhbSISMQU0iIiEVNIi4hErDjfBUjntG7dOqqrl+V0nXV1ZdTW1udkXevXrwegS5cuOVlfrvXu\nvS8lJSX5LqNTyCikzWwf4FXgWHdfkt2SpDOorl7GFVWT2bOyPN+lZEXNmys5Y9EGepSW5ruUdrey\nsZGhP/8VBxzQJ9+ldAppQ9rMugAzgIbslyOdyZ6V5ZT33CvfZWRFw4er6FG6ni+VdcydkOROJn3S\nNwG3AyuzXIuIiGylzZA2s1FAjbs/nUwqyHpFIiKyWbrujnOAJjM7DjgMuNfMTnb3D1qauaKilOLi\novauUTqgurqyfJcgO6F79zIqO+j5hNi0GdLu/o3m22b2PDCmtYAGqKtrbMfSpCPL1VUWkh21tfXU\n1KzOdxkdRls7PF0nLSISsYyvk3b3Y7JZiIiIbEstaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmk\nRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIK\naRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiGX838Ilt9atW0d19bJ8l5E1777bcbdNpD0ppCNVXb2M\nCTdVUdptn3yXkhUfLf9fep2Q7ypE4qeQjlhpt30oq+iV7zKyovGTD4B/5LsMkeipT1pEJGIKaRGR\niCmkRUQippAWEYmYQlpEJGJpr+4wsyLgTqAv0ASMdfc3sl2YiIhk1pI+Edjk7l8FrgFuyG5JIiLS\nLG1Iu/vvgDHJ3f2AumwWJCIin8noxyzuvtHM7gG+BXw3qxWJiMhmGZ84dPdRhH7pO81sj6xVJCIi\nm2Vy4nAk8EV3vxFYA2xK/rZRUVFKcXFR+1bYSdXVleW7BJFWde9eRmVleb7L6BQy6e54GLjHzP4I\ndAEmuPvalmasq2tsz9o6tdra+nyXINKq2tp6ampW57uMDqOtHV7akHb3NcC/t2dBIiKSGf2YRUQk\nYgppEZGIKaRFRCKmkBYRiZhCWkQkYgppEZGIKaRFRCKmkBYRiZhCWkQkYgppEZGIKaRFRCKmkBYR\niZhCWkQkYgppEZGIKaRFRCKmkBYRiZhCWkQkYgppEZGIKaRFRCKmkBYRiZhCWkQkYgppEZGIKaRF\nRCKmkBYRiZhCWkQkYgppEZGIKaRFRCKmkBYRiZhCWkQkYgppEZGIFbf1oJl1AWYC+wK7Ade7++9z\nUZiIiKRvSX8PqHH3rwPDgVuzX5KIiDRrsyUNPAQ8nNwuBDZktxwREUnVZki7ewOAmZUTAvvqXBQl\nIiJBupY0ZtYbeASY5u4PtDVvRUUpxcVF7VVbp1ZXV5bvEkRa1b17GZWV5fkuo1NId+Lw88DTwDh3\nfz7dwurqGturrk6vtrY+3yWItKq2tp6amtX5LqPDaGuHl64lfRXQDZhsZpOTaSe4+6ftVJuIiLQh\nXZ/0BGBCjmoREZGt6McsIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTS\nIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGF\ntIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIR266QNrPB\nZvZ8tooREZEtFWc6o5ldAZwJ1GevHBERSbU9LemlwLeBgizVIiIiW8k4pN39EWBDFmsREZGtZNzd\nkYmKilKKi4vac5GdVl1dWb5LEGlV9+5lVFaW57uMTqFdQ7qurrE9F9ep1daq61/iVVtbT03N6nyX\n0WG0tcPbkUvwmna8FBER2R7b1ZJ293eAodkpRUREtqYfs4iIREwhLSISMYW0iEjEFNIiIhFTSIuI\nREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIi\nIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0\niEjEFNIiIhFTSIuIRKw43QxmVgjcBvQH1gLnuftb2S5MREQya0mfApS4+1BgEnBzdksSEZFmmYT0\n0cBTAO7+MjAgqxWJiMhmabs7gK7AqpT7G82s0N03bT3jkUce0uICXn319Rana/6253/xN1dRUFi0\nzfSj/m1Ki/O/9NC1LU6Pcf41q2tpqFm9xfQXplS1OP83rx3R4vSY59+0fiOvr4OiwgJ+NfRrLc4/\n/sU/tzg99vlXNjayP/F9X3b1+VtT0NTU1OYMZnYzMNfdH0ruV7t77+1ai4iI7JBMujvmAP8CYGZD\ngEVZrUhERDbLpLvjUWCYmc1J7p+TxXpERCRF2u4OERHJH/2YRUQkYgppEZGIKaRFRCKmkJYOLRnW\nQGSXpROH0uGY2QGE4QsGABsJjZFFwCXuviSftYlsr0wuwRPZ1dwFTEqGMQA2X+P/n4RhDkR2GToU\nlI5ot9SABnD3ufkqRmRnqCUtHdEiM5tJGBhsFVBO+NWsfi0ruxyFtHRE4whD7B7NZwOE/Z7w61mR\nXYpOHIqIREx90iIiEVNIi4hETCEtIhIxhbSISMQU0iIiEfv/Uk39zSL/puUAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "homework_data_week_1 = homework_data.icol([0, 1, 2, 3])\n", + "homework_week_1_mean = homework_data_week_1.mean()\n", + "week1_hw = homework_week_1_mean.mean()\n", + "\n", + "homework_data_week_2 = homework_data.icol([4, 5, 6])\n", + "homework_week_2_mean = homework_data_week_2.mean()\n", + "week2_hw = homework_week_2_mean.mean()\n", + "\n", + "homework_data_week_3 = homework_data.icol([7, 8, 9, 10])\n", + "homework_week_3_mean = homework_data_week_3.mean()\n", + "week3_hw = homework_week_3_mean.mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 21 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_hw_weeks = [week1_hw, week2_hw, week3_hw]\n", + "phw = np.array(python_hw_weeks)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 22 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_hw = pd.DataFrame({\"Week 1\":phw[0:1], \"Week 2\":phw[1:2], \"Week 3\":phw[2:3]})" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 23 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_hw.plot(kind='bar', ylim=(0, 6))\n", + "plt.title(\"Average Python Homework Difficulty Per Week\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 24, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEGCAYAAACn2WTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGYJJREFUeJzt3Xl4VeW59/FvBqIigQYbW6C2WoUbj744MQk9PbUVi6eK\ndjgea0VxaEFUUFCLE32r9tjqEWsVBasU2nN5rFq1VKs4oG1FsSIWh7feiFYMipiaKCRBxrx/PCuw\nE7IHIDv7Ifl9rivXtffaK2vdaw+/9axnrf3sosbGRkREJE7FhS5ARETSU0iLiERMIS0iEjGFtIhI\nxBTSIiIRU0iLiESstNAFxMDMugDLgSXufmyh68mFmX0FeAR4HWgEioCNwI/d/aEM/7cfcL27f8fM\n9gVecffyPNU4O1n+DS2mbwY+7e41+VhvPqTblhbz7Au8CbycTCoGNgA3uftvknl+DLzh7v9jZmOA\nHwP/D5gG3AG8D/wK6OHuP9uBOvdN6ixPfa234/9nA0cD1YT3VZdkm77v7tXbW0+yzCHAH919r5Rp\ndwHfIrwP6pJp04E6d//hDqxjX/L4Xi4khXTwTWAJcLiZ9Xf31wtdUI6WufthTXfMbACwwMz2dfcP\n0/zPFwBrl+rCh7yjXIif67Y0tHhNPg88aWb17n6/u/8oZd7TgEvd/S4zmwXc7u4/acOad+S1bgSm\nufu0pglm9t/ArcB/7GAdLwCbzewQd19iZqXAUcBTwEjgvmS+rwI/2MF1dFgK6WA8cBewDLjAzM4B\n3gFOdPcXAczsbuApd59pZpcTWgHFwNvAeHdfaWZPAx8C/Qlv6heBnwG7Ab2Ax9397GR5Y4AfAmsJ\nb9YJ7t4leazV5WfbCHd/2cwagP3MbAFwvrs/nizzl8ArwPlAHzN7BBgHlJjZbcBg4FPAxe5+f3J0\nMY3wwdkEPA9c6O51ZvY2obX3NeDzwG8ztH6KMtVsZj9IatoErALOc/c3khbdWmAg8FngHkLr7vjk\n/tnu/pSZlRGe4y8DJcBLwATgTGCgu49OtuVDYKK7/8rMhhOCaEiW9fcEvgg0OzIxs2nAAOAEd6/P\ntH3u/o6ZTQUuBu5vapEDfYBBwL5m1hs4AVhrZj2ABmAvdz/fzPoBM4FKYDNwjbvfk7wG3055f75N\neM/UJPeLCS3z3mb2KPBn4CB3/17y+HDgZnc/PFP9ifnJc4yZ9QFuJrzuXYC73f3apCX7F8JRwb7A\nl919VfIcbDazecBXCI2hLxGONu4FRgH3Jcv9DKGR0epr6u5r0q0/tVgzOxB4mPB+/X0O2xe1Tt8n\nbWb/AgwhhMAcYDRQAdwJjEnmqSAcAt5lZqcBBwODkxbTI4QPA4RWSI27H+Tu0wlhcaW7DwUOAkaZ\n2WHJOn8KfC35kHxM8lpkWX62bfkWIWxeBW4DmnYI3QkfhtnJtDeTbp0iYHfgMXc/ApgMXJcs7gpC\nGA4ADknquz5lO/d09y8Dw4DzzewLrZRUBFxoZi+l/qXU+1VCeH3F3Q8l7CgfTPn/Q4ChhKC+EFjj\n7sOBm4ApyTxTgA3ufkSyjJXJc/sAMCKZZzhQR3gNIQTivTmsf3d3P9jdm9ZVnBySfx44NltAp3gZ\n+D/J7Uag0d0nAYuAi9z9v4G5hB3HJTRvtd9N2AkeDPw78BMzK2fbln2zVr67bwbOIrzWI4FfAt8w\ns08ls4wlvEdas2XHamZ7EFr885NJvwFmuftAwudmhJk1tbD7AFe5uzUFdIpHCCENYUf7B+CPwMhk\nh/I1YF5Sd7rXNNv6MbODCc/lWR0hoEEtaYBzgIfd/SNgkZn9g/AGngW8YGaTgO8Cc5M9+XGEFtAi\nM4Owp98jZXl/Sbl9OuGDcSlwINAVKCe8Wee5+3vJfLcA/ze5nW35qfZPCb0uhNb/Ce7+iZnNAX5k\nZp8mHKb+wd1Xm1nLlu16d38gub0E2Du5PRK4zN03AZjZzTQPsN8DuPt7ZvYBodW5vMWytzl0Tpa1\nmRAEIwktoQ+TZc0xs5uSVlljUvMmYJWZ1QOPJot4K1lf0/PVw8yaArkMWJW0YFeY2UDg68C1bA32\nUcCxhNc+0/qfSSm7CJhEaNEe6u4byF0joXWcqyLY0jgYQLKTdvcVQN/ksZyXk/xvtZk9BJxmZr8B\njiEcSbX2Pxea2anJ/VLgaeBSM9sT+DegwsyuTh7fk7AzfYFwTuS5NLU8Bvw8ef8dB3zd3d83s+WE\nnfBXCa1fSPOamlnXDOv/K6HBMR942t2fyvrs7CI6dUgnb7rTgIYknAG6A+cSWo2LCW+YMcDE5PFi\n4KfuPjNZRhmwV8pi61JuP0M4VHuU0FIfTPgQbKD5UcymlNvZlp/qzdT+z1Tu/pGZ3Us4MvguoUun\nNalh03QCsqmO1EAvIewImqxN838tZeruKGrl8aKU9azPUGuTYsKh8DwAM+tG+LAC3A98gxBI3wBO\nMbOTgbXu/o8kMDKtP7Wl3EgIq2eBOWY21N03Zti2VIPYejJxezQtf0sr2cz6AivY9jkvy2F50wmt\n543Afe7e2o6j1R1rsu7uyc0j3f2TZNqnCe+FSmBd0hLeRrKTeAv4NrDR3d9OHnoY+FdC18bkZFq6\n17Qpr9Ktv5FwlPQ/ZvbNlMbHLq2zd3d8D/gA6O3u+7n7foQ+yG7ASYRDxCnAHu7e1EKYB3w/OeSE\n0AKek7LM1FbQEcAUd38Q+BxwAOE5nwccnfRFQtItkePyt0dTl0uRuy9Kpm2kedimMw8YZ2alyeHo\nuYTWUFtpTNbxn8kHDTM7A/gn4dxAxr7sFnWeb2ZlSZ0zgP9KHnsAOAUodvf3k/qvI/SFNv3v9qx/\nkbvfAnzE1iOfjJI+5SuApqtCMu3MUh8rcvc1hPMaY5Jl7UPYSXQn9M8PSqYPJZzzaKnZa528hzcD\nF5G+qyNtje6+GlhIEqZJ//lfCEcmuXgEuJLQ1dHkIUJD4v2Uk92tvaY/yWH965JtPBOYYWafybGu\nqHX2kB5HaDVsaam4+8fALwgt57mEM+R3pvzPHYQ31kIze5VwqHV6yuONyXJqCYfYi83sGcIO4Y/A\nAe7+BqGPdZ6ZvUA40diQ4/JTZbzawN1fJpxImpEy+VVgk5ktTLOMpvvXEC4H+xvhZFAJW48mtkdr\nNTY9R08ANwLzk20dDRyXvB6Z+lxTH7uacHL1JeA1wnt6UrL8vyfzPZnM+xih3/R3O7D+VGcC45Nw\nbGmPlP73FwknWKe4+yMZno+W25R6+xTgJDP7G1v7WlcRTjpPTLq7zib0b6cuC7Z9rSGcl3jX3V9L\nU0emGpvqGWpmLxNOJv+vu/9vDv8HIaQPpvmJ2BcJJwwfTpnW2mva1MrOun53/xOhLz/1c7vLKtJQ\npe0v6fM8Dbja3RuTE34Xu/uRbbye/QlXjvRrOjyUzsvCpW8PAL9293uzzS9xyNonnZz0Op5w2HSL\nu+/oobdstQLoDbxiZhsJh89ntuUKzOwq4PuEvj0FdCeXXFH0DOEkuQJ6F5KxJW3hW22T3H1UcpLt\nEm9+Mb6IiORRtpb0MYTW3oOEkxUX578kERFpki2kK4F9CJehfZFw4qJ/vosSEZEgW0j/E/h7cj3o\nUjP7xMw+7e7/bG3mjRs3NZaWlrR5kSIiHVzaS06zhfQzhMuupiXX9O5JGAOhVbW12/OlKpH2VVlZ\nTnX1mkKXIbKNysr0g/dlvE7a3R8GXjKzvxK6OsanXlMsIiL51abXSVdXr1GAS7TUkpZYVVaWp+3u\n6OzfOBQRiZpCWkQkYgppEZGIKaRFRCLWqceTFpH2s379eqqqWv4uxM7ZZ58vUFaWy1Dauy6FtIi0\ni6qq5Uy8fi5de+ydfeYcNHz8ATddPIr99++bdp6JE8czbty5HHjgQWzYsIHjjjua008/m1NOGQ3A\neef9gAsuuJgDDki/jJZGjfo6c+fOyzjPihVVXH75xcyZc3fOy01HIS0i7aZrj73pVtGn3dY3aNBg\nlix5iQMPPIglS15iyJBhLFy4gFNOGc26detYtWrVdgU0QFGWn6N49NGHue++3/LRRx/tROVbqU9a\nRDqsQYOGsmTJ3wBYuPBZjj/+BOrq1lBfX8drr73CYYeFH0ufP/8Jxo07k/Hjz2bGjFsAqKur44or\nLmHChHFMmDCOt95a1mzZM2dOZ9q0n22zzu7de3DLLbeT/TcQcqOWtIh0WH379uOdd94GYMmSxYwd\ney4DBw5m0aK/smzZGwwZMozVqz9m1qzbufPO37Dbbrtx9dVTeeGF53nhhecZOHAwJ574Haqq3uHa\na6/i1lvvAGD69JsoKipi0qQfbrPOYcO+1KbboJAWkQ6ruLiYAw7oy8KFz9Kz51506dKFoUOHs2DB\nn1m2bBknnXQKVVXL+eijWi66aAIAa9eu5d13V/CPf7zJSy8t4sknHwdgzZrVANTU1PDmm8vo0+dz\n7bINCmkR6dAGDRrCr389i2OOGQnAgAGHMmvW7ZSUlFBeXk6vXn3Ye+/P8POf30pJSQkPPfR7+vf/\nF6qq3uGYY45lxIiRVFd/wOOPh5OFPXv2ZNq0mznvvB/w/PPPMWRIm/7q3TYU0iLSbho+/qDdlzVw\n4BCuu+6/mDr1GgBKS0spL+9Ov34GQEVFBSef/D3OO+/7bNq0mV69ejNixEhOP/1Mrr32aubOfYD6\n+nrOOmtsssRw5vDSS6cyefL53H77HLp3797KmnP9wfvMNMCSdBoaYKmwdJ10epkGWFJLWkTaRVlZ\nWcZrmqV1ugRPRCRiCmkRkYgppEVEIqaQFhGJmE4ciki70NUdO0YhLSLtoqpqOZfMncqeGX4Ze3vU\nV6/hulFXRTcK3vTpN/HKK0vYtGkjo0Z9i+OPPzH3jWqFQlpE2s2eleWU9/5Uu62vvUfBW7x4Ee+9\nt4IZM2axYcMGRo8+iaOOOppu3brt8DYopEWkwxo0aCizZ9/BySefumUUvNtuu5n6+jrcX282Ct49\n99xFcXExAwYcyrhx51FXV8dPf3oVq1eHMTsuuOAivvjFA7Yse+bM6dTX1zUbZOnggwfQt69tub9p\n02ZKS3cuZhXSItJhtfcoeGVlZZSVlbFx40auueZHnHDCN9l99913ahsU0iLSYRViFLzVq1dz5ZVT\nOPzwIzj11DE7vQ0KaRHp0NpzFLx16z7hggvO4bvfHc2IESPbpH6FtIi0m/o2HOAq12W15yh4Dz74\nO9577z3mzn2AuXMfAOCyy35Er169d3g7NQqedBoaBa+wdJ10ehoFT0QKTqPg7Rh9LVxEJGJZW9Jm\nthj4OLn7lrufld+SRESkScaQNrPdAdz9qPYpR0REUmVrSR8CdDWzecm8l7n78/kvS0REIHtI1wPX\nu/udZtYXeMTM+rn75naoTUQ6EF3dsWOyhfRSYBmAu79hZh8CvYB3W5u5oqIrpaUlbVuhSBuqbKMR\n2GT7LV26lGcvnECvrl3bZHkrGxo4bs4s+vTpl3aeMWPGMGnSJAYMGMD69es58sgjGT9+PGedFU6t\njR49mssvv5z+/fvnvN7hw4ezYMGCtI/feOONPPfccxQVFTF58mQGDx6c+0a1IltInwEMAM41s95A\nd2Bluplraxt2qhiRfNJ10oVVU1NHr65d+Xy3tttR1tTUZXxNDznkCP70pwX06rUfixb9lcGDj+SJ\nJ+YzatRJrFu3jqqqd9lrrz7b9b5obGxMO//Spa+zaNFipk+/k/ffX8mUKZOZPfuurMvM1HjIdgne\nnUB3M/szcDdwhro6RGRXMWjQUJYs+RvAllHw6urWUF9fx2uvvdJsFLxx485k/PizmTHjFgDq6uq4\n4opLmDBhHBMmjOOtt5Y1W/bMmdOZNu1nzab169efG264GYCVK9+jvHznd0gZW9LuvhEYvdNrEREp\ngPYeBQ+gpKSEmTOn87vf3cOFF16809ugbxyKSIdViFHwAMaOPZfRo89g7NgxHHLIYfTu3WeHt0Eh\nLSIdWnuOgrd48SKefvpJJk36IWVlZZSWllJcvHNf7FZIi0i7WdnQdhcXrGxoYL8c5mvPUfAOPfRw\n5s9/gnPOOYvNmzfz7W+fxGc/22untlOj4Emnoas7CkvXSaenUfBEpOA0Ct6O0Sh4IiIRU0iLiERM\nIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjFdJy2SB/n44kZMOsqXSHYFCmmRPKiqWt6mA9zHZGVD\nA8Nu/IW+mNJOFNIiedLWA9xL56Q+aRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmY\nQlpEJGIKaRGRiCmkRUQippAWEYmYxu6QgijEKHG1td2oqalrl3W9807HHQFP2pdCWgqiqmo5l8yd\nyp6VHXMAourXVzIZDeUpO08hLQWzZ2U55b0/Vegy8qL+g9XAhkKXIR1ATiFtZnsDLwJfc/el+S1J\nRESaZD1xaGZdgJlAff7LERGRVLlc3XE9cBuwMs+1iIhICxlD2szGANXu/lgyqSjvFYmIyBbZ+qTP\nABrN7GjgUGCOmZ3g7qtam7mioiulpSVtXaN0QLW13QpdguyEnj27UdlBr8yJTcaQdvd/a7ptZk8B\nY9MFNEBtbUMbliYdWXtdryz5UVNTR3X1mkKX0WFk2uHpG4ciIhHL+Tppdz8qn4WIiMi21JIWEYmY\nQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiOk3DiNV\niF/Tbk/6NW2R3CikI1VVtZyJ18+la4+9C11KXny44u/0ObbQVYjETyEdsa499qZbRZ9Cl5EXDR+v\nAv5Z6DJEoqc+aRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmk\nRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYlY1vGkzawE+CXQD2gExrn7a/kuTEREcmtJHwds\ndvcvAVcAP8lvSSIi0iRrSLv774Gxyd19gdp8FiQiIlvl9PNZ7r7JzGYD3wS+k9eKRERki5xPHLr7\nGEK/9C/NbI+8VSQiIlvkcuJwNPA5d78WWAtsTv62UVHRldLSkratsJOqre1W6BJE0urZsxuVleWF\nLqNTyKW74z5gtpn9CegCTHT3da3NWFvb0Ja1dWo1NXWFLkEkrZqaOqqr1xS6jA4j0w4va0i7+1rg\nP9uyIBERyY2+zCIiEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGF\ntIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERM\nIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxEozPWhm\nXYBZwBeA3YBr3P0P7VGYiIhkb0l/D6h29y8DI4Fb8l+SiIg0ydiSBu4F7ktuFwMb81uOiIikyhjS\n7l4PYGblhMC+vD2KEhGRIFtLGjPbB7gfmO7ud2eat6KiK6WlJW1VW6dWW9ut0CWIpNWzZzcqK8sL\nXUankO3E4WeAx4Dx7v5UtoXV1ja0VV2dXk1NXaFLEEmrpqaO6uo1hS6jw8i0w8vWkr4M6AFMNbOp\nybRj3f2TNqpNREQyyNYnPRGY2E61iIhIC/oyi4hIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIR\nU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhI\nxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxBTSIiIRU0iLiERMIS0i\nEjGFtIhIxLYrpM1siJk9la9iRESkudJcZzSzS4BTgbr8lSMiIqm2pyW9DPgWUJSnWkREpIWcQ9rd\n7wc25rEWERFpIefujlxUVHSltLSkLRfZadXWdit0CSJp9ezZjcrK8kKX0Sm0aUjX1ja05eI6tZoa\ndf1LvGpq6qiuXlPoMjqMTDu8HbkEr3HHSxERke2xXS1pd38bGJafUkREpCV9mUVEJGIKaRGRiCmk\nRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIK\naRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGIKaRGRiCmkRUQippAWEYmY\nQlpEJGIKaRGRiCmkRUQippAWEYmYQlpEJGKl2WYws2LgVmAAsA44293fzHdhIiKSW0v6RKDM3YcB\nU4Ab8luSiIg0ySWkhwOPArj788DAvFYkIiJbZO3uALoDq1PubzKzYnff3HLGI444uNUFvPjiq61O\n1/yZ53/2t5dRVFyyzfQj/+PqVud/7t4rW50e4/xr19RQX72m2fSnr57b6vxfuXJUq9Njnn/zhk28\nuh5Kiov4xbB/bXX+Cc/+pdXpsc+/sqGB/Yjv87Krz59OUWNjY8YZzOwGYKG735vcr3L3fbZrLSIi\nskNy6e5YAPw7gJkNBV7Oa0UiIrJFLt0dDwAjzGxBcv+MPNYjIiIpsnZ3iIhI4ejLLCIiEVNIi4hE\nTCEtIhIxhbR0aMmwBiK7LJ04lA7HzPYnDF8wENhEaIy8DFzo7ksLWZvI9srlEjyRXc0dwJRkGANg\nyzX+vyIMcyCyy9ChoHREu6UGNIC7LyxUMSI7Qy1p6YheNrNZhIHBVgPlhG/N6tuysstRSEtHNJ4w\nxO5wtg4Q9gfCt2dFdik6cSgiEjH1SYuIREwhLSISMYW0iEjEFNIiIhFTSIuIROz/AxWnZZSCSwuI\nAAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_lec_week1 = ruby_data.icol([0, 1, 2, 3])\n", + "ruby_lec_week1_mean = ruby_lec_week1.mean()\n", + "rweek_mean_1 = ruby_lec_week1_mean.mean()\n", + "\n", + "ruby_lec_week2 = ruby_data.icol([5, 6, 7])\n", + "ruby_lec_week2_mean = ruby_lec_week2.mean()\n", + "rweek_mean_2 = ruby_lec_week2_mean.mean()\n", + "\n", + "ruby_lec_week3 = ruby_data.icol([8, 9, 10, 11])\n", + "ruby_lec_week3_mean = ruby_lec_week3.mean()\n", + "rweek_mean_3 = ruby_lec_week3_mean.mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 25 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_lec_weeks = [rweek_mean_1, rweek_mean_2, rweek_mean_3]\n", + "rlec = np.array(ruby_lec_weeks)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 26 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_lec = pd.DataFrame({\"Week 1\":rlec[0:1], \"Week 2\":rlec[1:2], \"Week 3\":rlec[2:3]})" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 27 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_lec.plot(kind='bar', ylim=(0, 6))\n", + "plt.title(\"Average Ruby Lecture Difficulty Per Week\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 28, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEGCAYAAACn2WTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGQlJREFUeJzt3Xt4VNW5x/FvLkSNBAo2toHipQovVg/euKm9eVos9iha\n7eFYFaViCyIFxUtRlJ4WPdpa6UWxYpVi7WOtWm1preIFtS2KilC0nuOLaMWgqKmJQhIKBHL+WDs4\nhExmEjKZRfh9nifPk9mzZ+13T2Z+s/bae1YKGhsbERGROBXmuwAREUlPIS0iEjGFtIhIxBTSIiIR\nU0iLiERMIS0iErHifBewszKzbsAqYLm7H5/verJhZvsBrwIvpCzuDqwGznH3f2R4/OvAaHd/tp3b\nfwK4wd1/257HN2trf+A6d//qjraVpv392Pa5KgQ2AT9x9zuSdb4LvOLuvzKzscB3gf8FZgG3Am8D\nvwB6uvv321nDi+5e1p79NbN5wBeBKqAR6Jbs0zfcvaqt9SRtDgP+5O57pSy7EzgF+Ki71ybLZgO1\n7v7tdmxjP5L9bk+NXY1Cuv2+AiwHjjCzge7+cr4LylK9ux+eusDMfgpcDZye4bGNQMEObLsx+ekI\n+wLWQW2ls81zZWb7AI+ZWZ273+fu30lZ9yzgMne/08zmAre4+9UdWEt79rcRmOXus5oWmNkPgZuA\n/2xnHc8BW8zsUHdfbmbFwLHA48BI4N5kvX8HvtnObUgKhXT7TQTuBFYCF5jZecAbwMnu/jyAmd0F\nPO7uc8xsOqG3UQi8Dkx09zVJ7/I9YCDhzfM88H1gN6ACeMTdz03aGwt8G1hPeFNMdvduyX0ttp9p\nJ8xsj2Q7bye35xF6Mde3dBuYkPSSdgeud/dfmNnPgXfdfXrymDOAU939lGyfTDM7EZgOlAD1wMXu\nvjgJgR8A/wE0AE8B5xN6qn3M7EFgAvCSu3dP2tqPD3ugY4FxQCnwvrt/wczGAeclz9V7wCR390w1\nuvsbZjYDuAS4r+m5AfoCQ4D9zKwPcBKw3sx6Jvuyl7t/y8wGAHOAcmALcJW7350coZya8rp5nfC3\nrE5uF6bs70PAn4GD3f2M5P5jCEcoR2TxVC8kvL4ws77ADcA+hF72Xe5+TfL8/YVwVLAf8Fl3fyd5\nDraY2QLg84ROyqcJRxv3AKOAe5N2PwYsMrOSZHufBYqAZYTX7bp0208t1swOAh4ALnT332exf12O\nxqTbwcw+BQwD7gZuB8YAvYDbgLHJOr0Ih5p3mtlZwCHA0KRn9iDhTQeht1Pt7ge7+2xgMnCluw8H\nDgZGmdnhyTavBb6QvBk/IPn7ZWi/uT3MbJmZLTeztwkfCi8Twr+pntTeburtAqDO3QcDI4Brk7pu\nBMYmYQIwHvhZds8mmFl/Qk/++GTfxhNCsJTwYXgEMCjZxzJgNCF4X02GmgpovYf+KeBzSUB/jtDr\n/UyyreuA+7KtlRBI/5b83gg0uvtUYAnhg+WHwHxCD/ZStn3+7gJ+4+6HAF8GrjazMlp+zrdy9y0p\n+zsS+DnwH2b2kWSV1p7vrUc+yQfyWYSgBrgDmJv8PYcBI8ysqYfdF/ieu1tTQKd4kBDSACcCfwD+\nBIxMXgNfABYkdU8DNrn7ke5+GLCG8DrOtH3M7BDCczluVw1oUE+6vc4DHnD394ElZvYPwhtlLvCc\nmU0FvgbMT3oMJxB6WkvMDEKPYo+U9v6S8vvZhDfgZcBBhB5gGeFNscDd30rWuxH47+T3TO2nWt90\nCG9mxwG/IvTW61PWSTek0UjoCZIcBSwgfGjckDwHJ5jZK0CFuz+Spo2WjCD05hcm9QNsBg4kvOF/\n6e4bkuWnJbV/vg3tv9A0VkrokR8IPJWyrV5m9pHk75lJI6F3nK0C2PqhPYjkw9PdVwP9k/uybid5\nbJWZ/RE4y8zuAI4jHE209JgLzezM5HYx8ARwmZntCXyOsO8zk/v3BA4lDGk0AE+nqeVh4MdmVkB4\n7X3J3d82s1XAYMJQxwPJuicAPc1sRHK7BHgn+QBOt/1nCUdqC4En3P3xjM9OF6aQbqPkxX0WUJ8E\nE0APwiH4dcBSwgtzLDAlub8QuNbd5yRtlAB7pTRbm/L7XwmHhA8ReupDCW+2TWx75LM55fdM7bfI\n3R82s1nAr83sIHdfy/bjzrs1e9iWZtvdmPw+GzgHWEES5G1QCDzm7qc1LUjGf1cTwoKU5eVsfwTY\nvOaSZvenPr+FwB3uPi1prwDol2VAQ/gwfCHjWttr2o+tveTkCGI1metvyWxC77kBuLfZh2yT7cak\nU7bdI/n1KHf/V7Lso4ShtHJgQ9IT3k7yIfEacCrQ4O6vJ3c9AHyGMLRxUbKskDC8sSDZRndCADdl\nT7rtNxKGjX5lZl9x9/szPyVdk4Y72u4M4F2gj7vv7+77A58kXCUxmnAoOg3Yw92beiILgG8kh7YQ\nesC3p7SZ2ts6Epjm7r8DPkHo9RUmbXwxGfMEODfl8Znab80PgfcJVyZAuBJgcFLPRwljjql1jk3u\n24cwnPNYct+9wOGEsdS5rWyvpV76QuA4S7qUZjYS+BvhzfwocLqZlSSH0jcTjlI2EcYxSeovScYv\nIZzUTedh4Gtm9vHk9jeSZRklY8pXAE3j8+mOOAqa3Vfg7usIQ0tjk7b6EcbXexCe8yHJ8uGEo4rm\nGvhwf0leW1uAi2l9aKnFGpMP5MUkYZqMn/+FMK6cjQeBKwlDHU3+SBj6e9vd30uWLQC+1ezvd3UW\n29+Q7OM5wM1m9rEs6+pyFNJtN4HQO9naI3L3D4CfEnrO8wln4m9LecythBfwYjP7O+GQ7uyU+xuT\ndmqAa4ClZvZXwgfCn4AD3f0V4EJggZk9RzjRWJ9l+6maj3c2AJOAicn48g1AhZm9TBgKebzZY3cz\ns6WEXtMkd1+ZtLOJENRPu3t1mm0D3GFm61J+rnH3/yVcCXCXmf0NmAmcmPQO5xDC7XlCD/YtwnP9\nErDZzBYnz/+lwINm9iwhvJr2c5vxXnd/mHAi6xEzWw6cSfpQbxq/X2ZmzxMup5vm7g+29Fw2e55a\n2v7pwOhkH5vGWt8hnA+YYmbLCB++S5q1BfD3pv1NuW8e8Ka7v5SmjtZqbKpnuJm9ADwD/Nrdf53F\n4yCE9CGE112T5wknDB9IWTaTcCJ7GeFvVsiHveyM23f3Jwlj+anvp11KgaYq3TkkZ9zPAma6e6OZ\nnQJc4u5H5beyIBkGehI4z92fy3c9XZ2Fq17uJ4zX35PveiR3Mo5JJyewTiQcat3o7tkeRkvHWg30\nAV40swbCIf45+S0pMLMvES5HvE0BnXvJEc9fCSevFdBdXKs96eQM+lR3H5X0lC71bS/gFxGRHMrU\nkz6O0HP7HeEExyW5L0lERJpkCulyoB/hkrJPEk52DMx1USIiEmQK6X8C/5dcAbDCzP5lZh9193+2\ntHJDw+bG4uKiDi9SRKSLSzsnTqaQ/ivhsrJZyfW5exLmOmhRTU1bvogl0rnKy8uoqlqX7zJEtlNe\nnn7Cv1avk3b3B4BlybWn8wmT9uiaPRGRTtKh10lXVa1TgEu01JOWWJWXl6Ud7tA3DkVEIqaQFhGJ\nmEJaRCRiCmkRkYhpPmkR6RQbN26ksnJVh7bZr9++lJRkM/32zkshLSKdorJyFVOum09pz707pL36\nD97lJ5eM4oAD+qddZ8qUiUyYcD4HHXQwmzZt4oQTvsjZZ5/L6aePAWDSpG9ywQWXcOCB6dtobtSo\nLzF//oJW11m9upLp0y/h9tvvyrrddBTSItJpSnvuTfdefTtte0OGDGX58mUcdNDBLF++jGHDjmbx\n4kWcfvoYNmzYwDvvvNOmgAYoSHuxXPDQQw9w772/4f33s/1nP63TmLSIdFlDhgxn+fK/AbB48VOc\neOJJ1Nauo66ulpdeepHDDw//YH3hwkeZMOEcJk48l5tvvhGA2tparrjiUiZPnsDkyRN47bWV27Q9\nZ85sZs36/nbb7NGjJzfeeAuZ/29CdtSTFpEuq3//AbzxxusALF++lPHjz2fw4KEsWfIsK1e+wrBh\nR7N27QfMnXsLt912B7vtthszZ87gueee4bnnnmHw4KGcfPJXqax8g2uu+R433XQrALNn/4SCggKm\nTv32dts8+uhPb7dsRyikRaTLKiws5MAD+7N48VP07r0X3bp1Y/jwY1i06M+sXLmS0aNPp7JyFe+/\nX8PFF08GYP369bz55mr+8Y9XWbZsCY89Fv7x/bp1awGorq7m1VdX0rfvJzplHxTSItKlDRkyjF/+\nci7HHTcSgEGDDmPu3FsoKiqirKyMioq+7L33x/jxj2+iqKiIP/7x9wwc+CkqK9/guOOOZ8SIkVRV\nvcsjj4SThb1792bWrBuYNOmbPPPM0wwbltv/YKeQFpFOU//Bu53e1uDBw/jBD/6HGTOuAqC4uJiy\nsh4MGGAA9OrVi9NOO4NJk77B5s1bqKjow4gRIzn77HO45pqZzJ9/P3V1dYwbNz5pMZw5vOyyGVx0\n0be45Zbb6dGjRwtbznCGMUuaYEl2GZpgKb90nXR6rU2wpJ60iHSKkpKSVq9plpbpEjwRkYgppEVE\nIqaQFhGJmEJaRCRiOnEoIp1CV3e0j0JaRDpFZeUqLp0/gz1b+c/YbVFXtY4fjPpedLPgzZ79E158\ncTmbNzcwatQpnHjiydnvVAsU0iLSafYsL6Osz0c6bXudPQve0qVLeOut1dx881w2bdrEmDGjOfbY\nL9K9e/d274NCWkS6rCFDhjNv3q2cdtqZW2fB+9nPbqCurhb3l7eZBe/uu++ksLCQQYMOY8KESdTW\n1nLttd9j7dowZ8cFF1zMJz954Na258yZTV1d7TaTLB1yyCD697ettzdv3kJx8Y7FrEJaRLqszp4F\nr6SkhJKSEhoaGrjqqu9w0klfYffdd9+hfVBIi0iXlY9Z8NauXcuVV07jiCOO5Mwzx+7wPiikRaRL\n68xZ8DZs+BcXXHAeX/vaGEaMGNkh9SukRaTT1HXgBFfZttWZs+D97ne/5a233mL+/PuZP/9+AC6/\n/DtUVPRp935qFjzZZWgWvPzSddLpaRY8Eck7zYLXPvpauIhIxDL2pM1sKfBBcvM1dx+X25JERKRJ\nqyFtZrsDuPuxnVOOiIikytSTPhQoNbMFybqXu/szuS9LREQgc0jXAde5+21m1h940MwGuPuWTqhN\nRLoQXd3RPplCegWwEsDdXzGz94AK4M2WVu7Vq5Ti4qKOrVCkA5V30Axs0nYrVqzgqQsnU1Fa2iHt\nramv54Tb59K374C064wdO5apU6cyaNAgNm7cyFFHHcXEiRMZNy6cWhszZgzTp09n4MCBWW/3mGOO\nYdGiRWnv/9GPfsTTTz9NQUEBF110EUOHDs1+p1qQKaS/DgwCzjezPkAPYE26lWtq6neoGJFc0nXS\n+VVdXUtFaSn7dO+4D8rq6tpW/6aHHnokTz65iIqK/Vmy5FmGDj2KRx9dyKhRo9mwYQOVlW+y1159\n2/S6aGxsTLv+ihUvs2TJUmbPvo23317DtGkXMW/enRnbbK3zkOkSvNuAHmb2Z+Au4Osa6hCRncWQ\nIcNZvvxvAFtnwautXUddXS0vvfTiNrPgTZhwDhMnnsvNN98IQG1tLVdccSmTJ09g8uQJvPbaym3a\nnjNnNrNmfX+bZQMGDOT6628AYM2atygr2/EPpFZ70u7eAIzZ4a2IiORBZ8+CB1BUVMScObP57W/v\n5sILL9nhfdA3DkWky8rHLHgA48efz5gxX2f8+LEceujh9OnTt937oJAWkS6tM2fBW7p0CU888RhT\np36bkpISiouLKSzcsS92K6RFpNOsqe+4iwvW1NezfxbrdeYseIcddgQLFz7KeeeNY8uWLZx66mg+\n/vGKHdpPzYInuwxd3ZFfuk46Pc2CJyJ5p1nw2kez4ImIREwhLSISMYW0iEjEFNIiIhFTSIuIREwh\nLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFT\nSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhErzmYlM9sbeB74gruvyG1J\nIiLSJGNP2sy6AXOAutyXIyIiqbIZ7rgO+BmwJse1iIhIM62GtJmNBarc/eFkUUHOKxIRka0KGhsb\n095pZk8CjcnPYYADJ7n7Oy2t39CwubG4uCgXdYqIdGVpO8CthnQqM3scGN/aicOqqnXZNSaSB+Xl\nZVRVreuUbW3cuJHKylWdsq186NdvX0pKSvJdRpdRXl6WNqSzurpDRNqmsnIVT104mYrS0nyX0uHW\n1Ndz9I9+ygEH9M93KbuErEPa3Y/NZSEiXU1FaSn7dC/Ldxmyk9OXWUREIqaQFhGJmEJaRCRiCmkR\nkYgppEVEIqaQFhGJmEJaRCRiCmkRkYjpG4eSF/n42nRNTXeqq2s7ZVtvvNF1vxIunUshLXlRWbmK\nS+fPYM/yrvmNvKqX13ARmttCdpxCWvJmz/Iyyvp8JN9l5ETdu2uBTfkuQ7oAjUmLiERMIS0iEjGF\ntIhIxBTSIiIRU0iLiERMIS0iEjGFtIhIxHSddKS6+j8y1TfyRLKjkI5UZeUqplw3n9Kee+e7lJx4\nb/X/0ff4fFchEj+FdMRKe+5N9159811GTtR/8A7wz3yXIRI9jUmLiERMIS0iEjGFtIhIxBTSIiIR\nU0iLiERMIS0iEjGFtIhIxBTSIiIRy/hlFjMrAn4ODAAagQnu/lKuCxMRkex60icAW9z908AVwNW5\nLUlERJpkDGl3/z0wPrm5H1CTy4JERORDWc3d4e6bzWwe8BXgqzmtSEREtsr6xKG7jyWMS//czPbI\nWUUiIrJVNicOxwCfcPdrgPXAluRnO716lVJcXNSxFe6iamq657sEkbR69+5OeXlZvsvYJWQz3HEv\nMM/MngS6AVPcfUNLK9bU1Hdkbbu06urafJcgklZ1dS1VVevyXUaX0doHXsaQdvf1wH91ZEEiIpId\nfZlFRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVE\nIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkR\nkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgVt3anmXUD5gL7ArsB\nV7n7HzqjMBERydyTPgOocvfPAiOBG3NfkoiINGm1Jw3cA9yb/F4INOS2HBERSdVqSLt7HYCZlREC\ne3pnFCUiIkGmnjRm1g+4D5jt7ne1tm6vXqUUFxd1VG27tJqa7vkuQSSt3r27U15elu8ydgmZThx+\nDHgYmOjuj2dqrKamvqPq2uVVV9fmuwSRtKqra6mqWpfvMrqM1j7wMvWkLwd6AjPMbEay7Hh3/1cH\n1SYiIq3INCY9BZjSSbWIiEgz+jKLiEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwh\nLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFT\nSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjEFNIiIhFTSIuIREwhLSISMYW0iEjE\n2hTSZjbMzB7PVTEiIrKt4mxXNLNLgTOB2tyVIyIiqdrSk14JnAIU5KgWERFpJuuQdvf7gIYc1iIi\nIs1kPdyRjV69SikuLurIJndZNTXd812CSFq9e3envLws32XsEjo0pGtq6juyuV1adbWG/iVe1dW1\nVFWty3cZXUZrH3jtuQSvsf2liIhIW7SpJ+3urwNH56YUERFpTl9mERGJmEJaRCRiCmkRkYgppEVE\nIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkR\nkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJaRCRiCmkRkYgppEVEIqaQFhGJmEJa\nRCRiCmkRkYgppEVEIqaQFhGJWHGmFcysELgJGARsAM5191dzXZiIiGTXkz4ZKHH3o4FpwPW5LUlE\nRJpkE9LHAA8BuPszwOCcViQiIltlHO4AegBrU25vNrNCd9/SfMUjjzykxQaef/7vLS7X+q2v/9Rv\nLqegsGi75Uf958wW13/6nitbXB7j+uvXVVNXtW6b5U/MnN/i+p+/clSLy2Nef8umzfx9IxQVFvDT\noz/T4vqTn/pLi8tjX39NfT37E9/7ZWdfP52CxsbGVlcws+uBxe5+T3K70t37tWkrIiLSLtkMdywC\nvgxgZsOBF3JakYiIbJXNcMf9wAgzW5Tc/noO6xERkRQZhztERCR/9GUWEZGIKaRFRCKmkBYRiZhC\nWrq0ZFoDkZ2WThxKl2NmBxCmLxgMbCZ0Rl4ALnT3FfmsTaStsrkET2RncyswLZnGANh6jf8vCNMc\niOw0dCgoXdFuqQEN4O6L81WMyI5QT1q6ohfMbC5hYrC1QBnhW7P6tqzsdBTS0hVNJEyxewwfThD2\nB8K3Z0V2KjpxKCISMY1Ji4hETCEtIhIxhbSISMQU0iIiEVNIi4hE7P8BFDz8DR02eaUAAAAASUVO\nRK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 28 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_hw_week1 = ruby_data_hw.icol([0, 1, 2])\n", + "ruby_hw_week1_mean = ruby_hw_week1.mean()\n", + "rhw_mean_1 = ruby_hw_week1_mean.mean()\n", + "\n", + "ruby_hw_week2 = ruby_data_hw.icol([5, 6, 7])\n", + "ruby_hw_week2_mean = ruby_hw_week2.mean()\n", + "rhw_mean_2 = ruby_hw_week2_mean.mean()\n", + "\n", + "ruby_hw_week3 = ruby_data_hw.icol([8, 9, 10, 11])\n", + "ruby_hw_week3_mean = ruby_hw_week3.mean()\n", + "rhw_mean_3 = ruby_hw_week3_mean.mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 29 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_hw_weeks = [rhw_mean_1, rhw_mean_2, rhw_mean_3]\n", + "rhw = np.array(ruby_hw_weeks)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 30 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_hw = pd.DataFrame({\"Week 1\":rhw[0:1], \"Week 2\":rhw[1:2], \"Week 3\":rhw[2:3]})" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 31 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_hw.plot(kind='bar', ylim=(0, 6))\n", + "plt.title(\"Average Ruby Homework Difficulty Per Week\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 32, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEGCAYAAACn2WTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGVlJREFUeJzt3Xl8VPW9//FXFqLGBAo2tkC1WoUPXv3hxqb09tcNi7eK\nVnu9VkVxaUGkoLgUN3qvy9VqxVrBilWKbR/WqlVLtYq7rSgKQtH6qx/EBYMipiZKFgpk+f1xTnAS\nMgshM/NNeD8fjzwemZkz3/M5M5P3+Z7vOfNNQUtLCyIiEqbCfBcgIiLJKaRFRAKmkBYRCZhCWkQk\nYAppEZGAKaRFRAJWnO8CQmRmvYDVwAp3PzLf9WTCzPYC3gReSbi7DFgDnOHub6d5/jvACe7+UifX\nPx941d1vaHd/M/BZd6/uTLv5kGxb2i2zF21f70JgM3CTu/8mXuZ/gDfc/bdmNgH4H+D/AbOA24EP\ngF8Bfdz9J52oc6+4znIz2xu43t2/uw3Pnw98E6gCWoBe8TZ9392rtrWeuM2RwJ/dfbeE++4CjiP6\nHNTF980B6tz9R51Yx17E292ZGrsbhXTHvgOsAA4xsyHu/nq+C8pQg7sfnHiHmf0cuBo4Kc1zW4CC\n7Vh3S/zTE2S6LW1ebzPbE3jSzOrd/X53/3HCsqcCF7v7XWY2D7jN3a/uwpq/CNg2PqcFmOXus1rv\nMLOfArcA/9nJOpYAzWZ2oLuvMLNi4GvA08BY4L54ua8DP+jkOnYoCumOTQbuAlYB55rZ2cC7wLHu\n/jKAmd0NPO3uc83sUqKeQiHwDjDZ3dea2TPAR8AQog/+y8BPgJ2A/sDj7n5W3N4E4EfABqIP9FR3\n7xU/1mH76TbCzHaJ1/NBfHs+CT3EDnqMk+Iezs7ADe7+KzP7JfChu18aP+dk4Hh3P66DVaYMeTP7\nAfBDoAlYB0xx9zfiOjYAw4DPA/cQ9e6Ojm+f5e5Pm1lJ/Pp9BSgClgNTgTOAYe4+Pj4K+giYFtc/\nmiiIRqZZfz/gS8BD7WqeBQwFjnH3+lTb5+7vmtlM4ELg/tbXFxgIDAf2MrMBwDHABjPrAzQAu7n7\nD81sMDAXqACagavc/Z74KOf4hM/eO0Sfh+r4diFRz3yAmT0K/AXY391Pjh8fDdzs7oekqj/2VPwa\nY2YDgZuBPYl62Xe7+zVxT/avREcFewFfcfd18WvQbGYLga8SdXS+THS0cS8wDrgvbvdzwKJk76m7\n1yZbf2KxZrYf8DBwnrv/MYPt63Y0Jt2Omf0bMJIoKO4ExgN9gTuACfEyfYkOE+8ys1OBA4ARca/q\nEaI/GIh6KtXuvr+7zyEKlMvdfRSwPzDOzA6O13kt8I34D+kT4vcmTfvt7WJmy81shZl9QLRTeJ0o\n/FvrSewhJt4uAOrdfRgwBrg2rms2MCEOAoCJwC86WHcBcF68/i0/Ca/r14nC66vufhDRTvDBhOcf\nCIwiCurzgFp3Hw3cBMyIl5kBbHb3Q+M21sav2wNxzQCjgTqi9weiQLw3g/Xv7O4HuHvrugrjHdae\nwJHpAjrBK8D/iX9vAVrcfTqwFLjA3X8KLCDacVxE2/fgbuD37n4A8B/A1WZWTsfv2xbu3gycCbzp\n7mOBXwLfNrPPxIske88gYcca79RPJQpqgN8A8+LPxEhgjJm19rAHAle4u7UGdIJHiEIaoh3tn4A/\nA2Pjz9E3gIVx3cne03Trx8wOIHotz+ypAQ3qSXfkbOBhd/8YWGpmbxN9yOcBS8xsOvA9YEG8tz+K\nqJe01Mwg6g3sktDeXxN+P43oj+diYD+gFCgn+kAvdPf34+VmA/8d/56u/UQbWg+/zewI4LdEvfWG\nhGWS9XZbiHpxxEcBC4l2GjfHr8FRZvYG0N/dH0/y/DaHznEdzfE6xxL1hD6K13Gnmd0U98pagD+5\nexOwzszqgUfjJt4i6uW2vhZ9zKw1kEuAdXEPdo2ZDQO+BVzDp8E+DjiS6H1Ntf7n2r1G04l6tAe5\n++Ykr1lHWoh6x5kqgC07/qHEO2B3XwMMih/LuJ34uVVm9hBwqpn9BjgCmJTkOeeZ2Snx7WLgGeBi\nM9sV+L9AXzO7Mn58V6Kd6RKgEXghSS2PAT8zswKi9+xb7v6Bma0m2gl/naj3C0neUzMrTbH+l4iO\n9p4CnnH3p9O+Ot2YQjpB/ME8FWiIgwmgN3AOcD2wjOhDNQGYFj9eCFzr7nPjNkqA3RKarUv4/Tmi\nw7lHiXrqI4j+UDbT9qimKeH3dO13yN0fiw/Vf2dm+7n7erYed96p3dOa2613U/z7HKIhhZXEQZ5E\nquGOgg4eLyA6jCVhXa06CsZCokPhhQBmVkb0xwpwP/BtokD6NnCSmZ1ItON6Ow6MVOtP7Cm3EIXV\n88CdZjbK3RtTbFui4bQ9eZup1va39JLNbBDRid/271tJBu3NIeo9NwL3tdtRt+pwxxqvu3f862Hu\n/q/4vs8SDUtVABvjnvBW4p3EW8DxQKO7vxM/9DDw70RDG+fH9yV7T1uzKdn6W4iOkn5rZt9x9wfS\nvyTdk4Y72joZ+BAY4O57u/veROOUZcAJRIeRM4Bd3L21F7EQ+H58WApRD/jOhDYTe0qHAjPc/UHg\nC8C+RO/BQuCb8XglwFkJz0/Xfio/BT4muqoAonHeYXE9nyUaL0ysc0L82J5EwwVPxo/dBxxMNA46\nL8N1J2oh2o7/iteLmZ0O/JNo3D/TE5YLgR+aWUl82Hwr8L/xYw8QnRwtdPcPiHpz1xGNhbY+d1vW\nv9TdZxO9fv+dSXHxmPJlQOsYf7Ltar/DKHD3WqLhqQlxW3sQ7SR6E71vw+P7RxGdZ2ivkU93OMSf\nz2bgApIPdSStMd6pLyYO03j8/K9ERyaZeAS4nGioo9VDRMOHH7Qe0dDxe3p1BuvfGG/jGcCtZva5\nDOvqdhTSbU0i6lls6c24+yfAz4l6zguIzqLfkfCc24k+fIvN7O9Eh2OnJTzeErdTQ3QYvszMniPa\nIfwZ2Nfd3yAah11oZkuITjQ2ZNh+ovZjlY3AFGByPL58M9DfzF4nGgp5ut1zdzKzZUQ9ninuvipu\nZzNRUL/gqS+l6+iKiNbtfwK4EXgq3o7xwFHxa51qzDXxsSuJTpwuB14j+vxOj9v/R7xc647lMaJx\n0z90Yv2JziB6/UZ18FjrOYDlZvYy0eV0M9z9kRSvR/ttSvz9JOAEM/sbn461riM6pzAtHuM/i2h8\nO7EtgL8DTWa2OOGx+cB77v5akjpS1dhazygzewV4Efidu/8ug+dBFNIH0PZE7MtEJwwfTrivo/e0\ntZeddv3u/izRWH7i32SPUqCpSvMvHhc9FbjS3VvM7DjgQnc/LL+VReJhoGeBs919Sb7rkfQsuvTt\nAeDX7n5vuuUlXGnHpOOTXEcTHUrNdvdMD7Ulc2uAAcCrZtZIdIh9Rn5LipjZt4iuhLhDAd09xEdN\nzxGdAFdAd3Mpe9Jm9lVguruPi3tTF3nbC/RFRCSL0vWkjyDq3T1IdALjwuyXJCIirdKFdAWwB9Fl\nZ18iOpkxJNtFiYhIJF1I/xP4R3yVwEoz+5eZfdbd/9nRwo2NTS3FxUVdXqSISA+X9DLUdCH9HNGl\nZ7Pia3h3JZoXoUM1NdvyRSuR3KqoKKeqqjbfZYhspaIi+YR+Ka+TdveHgeVm9hLRUMfkxGuIRUQk\nu7r0OumqqloFuARLPWkJVUVFedLhDn3jUEQkYAppEZGAKaRFRAKmkBYRCZjmkxaRnNi0aROVlau7\ntM099vgiJSWZTK/dfSmkRSQnKitXM+36BZT22b1L2mv45ENuunAc++wzKOky06ZNZtKkc9hvv/3Z\nvHkzRx31TU477SxOOmk8AFOm/IBzz72QffdN3kZ748Z9iwULFqZcZs2aSi699ELuvPPujNtNRiEt\nIjlT2md3yvoOzNn6hg8fwYoVy9lvv/1ZsWI5I0cezuLFizjppPFs3LiRdevWbVNAAxSk+RcVjz76\nMPfd93s+/vjj7aj8UxqTFpEea/jwUaxY8TcAFi9+nqOPPoa6ulrq6+t47bVXOfjg6B+oP/XUE0ya\ndAaTJ5/FrbfOBqCuro7LLruIqVMnMXXqJN56a1WbtufOncOsWT/Zap29e/dh9uzbSP9/ETKjnrSI\n9FiDBg3m3XffAWDFimVMnHgOw4aNYOnSl1i16g1Gjjyc9es/Yd6827jjjt+w0047ceWVM1my5EWW\nLHmRYcNGcOyx36Wy8l2uueYKbrnldgDmzLmJgoICpk//0VbrPPzwL2913/ZQSItIj1VYWMi++w5i\n8eLn6ddvN3r16sWoUaNZtOgvrFq1ihNOOInKytV8/HENF1wwFYANGzbw3ntrePvtN1m+fClPPvk4\nALW16wGorq7mzTdXMXDgF3KyDQppEenRhg8fya9/PY8jjhgLwNChBzFv3m0UFRVRXl5O//4D2X33\nz/Gzn91CUVERDz30R4YM+TcqK9/liCOOZMyYsVRVfcjjj0cnC/v168esWTczZcoPePHFFxg5Mrv/\n5U4hLSI50/DJhzlva9iwkVx33f8yc+ZVABQXF1Ne3pvBgw2Avn37cuKJJzNlyvdpamqmf/8BjBkz\nltNOO4NrrrmSBQseoL6+njPPnBi3GJ05vPjimZx//g+57bY76d27dwdrTnOGMUOaYEl2GJpgKb90\nnXRyqSZYUk9aRHKipKQk5TXN0jFdgiciEjCFtIhIwBTSIiIBU0iLiARMJw5FJCd0dUfnKKRFJCcq\nK1dz0YKZ7JriP2Nvi/qqWq4bd0Vws+DNmXMTr766gqamRsaNO46jjz42843qgEJaRHJm14pyygd8\nJmfry/UseMuWLeX999dw663z2Lx5M+PHn8DXvvZNysrKOr0NCmkR6bGGDx/F/Pm3c+KJp2yZBe8X\nv7iZ+vo63F9vMwvePffcRWFhIUOHHsSkSVOoq6vj2muvYP36aM6Oc8+9gC99ad8tbc+dO4f6+ro2\nkywdcMBQBg2yLbebmpopLt6+mFVIi0iPletZ8EpKSigpKaGxsZGrrvoxxxzzHXbeeeft2gaFtIj0\nWPmYBW/9+vVcfvkMDjnkUE45ZcJ2b4NCWkR6tFzOgrdx478499yz+d73xjNmzNguqV8hLSI5U9+F\nE1xl2lYuZ8F78ME/8P7777NgwQMsWPAAAJdc8mP69x/Q6e3ULHiyw9AsePml66ST0yx4IpJ3mgWv\nc/S1cBGRgKXtSZvZMuCT+OZb7n5mdksSEZFWKUPazHYGcPev5aYcERFJlK4nfSBQamYL42UvcfcX\ns1+WiIhA+pCuB6539zvMbBDwiJkNdvfmHNQmIj2Iru7onHQhvRJYBeDub5jZR0B/4L2OFu7bt5Ti\n4qKurVCkC1V00Qxssu1WrlzJ8+dNpX9paZe0t7ahgaPunMfAgYOTLjNhwgSmT5/O0KFD2bRpE4cd\ndhiTJ0/mzDOjU2vjx4/n0ksvZciQIRmvd/To0SxatCjp4zfeeCMvvPACBQUFnH/++YwYMSLzjepA\nupA+HRgKnGNmA4DewNpkC9fUNGxXMSLZpOuk86u6uo7+paXsWdZ1O8rq6rqU7+mBBx7Ks88uon//\nvVm69CVGjDiMJ554inHjTmDjxo1UVr7HbrsN3KbPRUtLS9LlV658naVLlzFnzh188MFaZsw4n/nz\n70rbZqrOQ7pL8O4AepvZX4C7gdM11CEi3cXw4aNYseJvAFtmwaurq6W+vo7XXnu1zSx4kyadweTJ\nZ3HrrbMBqKur47LLLmLq1ElMnTqJt95a1abtuXPnMGvWT9rcN3jwEG644WYA1q59n/Ly7d8hpexJ\nu3sjMH671yIikge5ngUPoKioiLlz5/CHP9zDeedduN3boG8cikiPlY9Z8AAmTjyH8eNPZ+LECRx4\n4MEMGDCw09ugkBaRHi2Xs+AtW7aUZ555kunTf0RJSQnFxcUUFm7fF7sV0iKSM2sbuu7igrUNDeyd\nwXK5nAXvoIMO4amnnuDss8+kubmZ448/gc9/vv92badmwZMdhq7uyC9dJ52cZsETkbzTLHido1nw\nREQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAK\naRGRgCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmY\nQlpEJGAKaRGRgBVnspCZ7Q68DHzD3VdmtyQREWmVtidtZr2AuUB99ssREZFEmQx3XA/8Alib5VpE\nRKSdlCFtZhOAKnd/LL6rIOsViYjIFgUtLS1JHzSzZ4GW+OcgwIFj3H1dR8s3Nja1FBcXZaNOEZGe\nLGkHOGVIJzKzp4GJqU4cVlXVZtaYSB5UVJRTVVWb7zJEtlJRUZ40pHUJnohIwDLuSWdCPWnJ1KZN\nm6isXJ3TdfbrV0Z1dV3O1rfHHl+kpKQkZ+uT7itVTzqj66RFulpl5WouWjCTXSvK811KVtRX1XLd\nuCvYZ59B+S5FujmFtOTNrhXllA/4TL7LEAmaxqRFRAKmkBYRCZhCWkQkYBqTFsmC5sYm3n03t1ev\n5JKuXMkdhbRIFmyormfN/TfQVFqa71K63NqGBg6/8ee6ciVHFNIiWdK/tJQ9y3rmJYaSOxqTFhEJ\nmEJaRCRgCmkRkYBpTDpQ+ZjbIpd68pUPIl1JIR2oysrVTLt+AaV9ds93KVnx0Zp/MPDIfFchEj6F\ndMBK++xOWd+B+S4jKxo+WQf8M99liARPY9IiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwh\nLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISsLTzSZtZEfBLYDDQ\nAkxy99eyXZiIiGTWkz4KaHb3LwOXAVdntyQREWmVNqTd/Y/AxPjmXkBNNgsSEZFPZfTvs9y9yczm\nA98BvpvVikREZIuMTxy6+wSicelfmtkuWatIRES2yOTE4XjgC+5+DbABaI5/ttK3bynFxUVdW+EO\nqqamLN8liCTVr18ZFRXl+S5jh5DJcMd9wHwzexboBUxz940dLVhT09CVte3Qqqvr8l2CSFLV1XVU\nVdXmu4weI9UOL21Iu/sG4L+6siAREcmMvswiIhIwhbSISMAU0iIiAVNIi4gETCEtIhIwhbSISMAU\n0iIiAVNIi4gETCEtIhIwhbSISMAU0iIiAVNIi4gETCEtIhIwhbSISMAU0iIiAVNIi4gETCEtIhIw\nhbSISMAU0iIiAVNIi4gETCEtIhIwhbSISMAU0iIiAVNIi4gETCEtIhIwhbSISMAU0iIiAVNIi4gE\nTCEtIhIwhbSISMCKUz1oZr2AecAXgZ2Aq9z9T7koTERE0vekTwaq3P0rwFhgdvZLEhGRVil70sC9\nwH3x74VAY3bLERGRRClD2t3rAcysnCiwL81FUSIiEknXk8bM9gDuB+a4+92plu3bt5Ti4qKuqm2H\nVlNTlu8SRJLq16+MioryfJexQ0h34vBzwGPAZHd/Ol1jNTUNXVXXDq+6ui7fJYgkVV1dR1VVbb7L\n6DFS7fDS9aQvAfoAM81sZnzfke7+ry6qTUREUkg3Jj0NmJajWkREpB19mUVEJGAKaRGRgCmkRUQC\nppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAKaRGR\ngCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpEJGAKaRGRgCmkRUQCppAWEQmYQlpE\nJGAKaRGRgCmkRUQCppAWEQmYQlpEJGDbFNJmNtLMns5WMSIi0lZxpgua2UXAKUBd9soREZFE29KT\nXgUcBxRkqRYREWkn45B29/uBxizWIiIi7WQ83JGJvn1LKS4u6somd1g1NWX5LkEkqX79yqioKM93\nGTuELg3pmpqGrmxuh1ZdraF/CVd1dR1VVbX5LqPHSLXD68wleC2dL0VERLbFNvWk3f0d4PDslCIi\nIu3pyywiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwh\nLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgFT\nSIuIBEwhLSISMIW0iEjAFNIiIgFTSIuIBEwhLSISMIW0iEjAFNIiIgErTreAmRUCtwBDgY3AWe7+\nZrYLExGRzHrSxwIl7n44MAO4IbsliYhIq0xCejTwKIC7vwgMy2pFIiKyRdrhDqA3sD7hdpOZFbp7\nc/sFDz30gA4bePnlv3d4v5ZPvfzzv7+EgsKire4/7D+v7HD5F+69vMP7Q1x+Q2019VW1be5/5soF\nHS7/1cvHdXh/yMs3b27i75ugqLCAnx/+7x0uP/X5v3Z4f+jLr21oYG/C+3vp7ssnU9DS0pJyATO7\nAVjs7vfGtyvdfY9tWouIiHRKJsMdi4D/ADCzUcArWa1IRES2yGS44wFgjJktim+fnsV6REQkQdrh\nDhERyR99mUVEJGAKaRGRgCmkRUQCppCWHi2e1kCk29KJQ+lxzGwfoukLhgFNRJ2RV4Dz3H1lPmsT\n2VaZXIIn0t3cDsyIpzEAtlzj/yuiaQ5Eug0dCkpPtFNiQAO4++J8FSOyPdSTlp7oFTObRzQx2Hqg\nnOhbs/q2rHQ7CmnpiSYTTbE7mk8nCPsT0bdnRboVnTgUEQmYxqRFRAKmkBYRCZhCWkQkYAppEZGA\nKaRFRAL2/wELA1tohjZBcQAAAABJRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 32 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "time = ['01/12/2015', '01/13/2015', '01/13/2015', '01/14/2015', '01/14/2015', \n", + " '01/15/2015', '01/15/2015', '01/20/2015', '01/20/2015', '01/21/2015', '01/21/2015',\n", + " '01/22/2015', '01/22/2015', '01/23/2015', '01/26/2015', '01/26/2015',\n", + " '01/27/2015', '01/27/2015', '01/28/2015', '01/28/2015', '01/29/2015', '01/29/2015', \n", + " '01/30/2015', '02/02/2015']\n", + "\n", + "index_time = pd.to_datetime(time)\n", + "index_time" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 33, + "text": [ + "\n", + "[2015-01-12, ..., 2015-02-02]\n", + "Length: 24, Freq: None, Timezone: None" + ] + } + ], + "prompt_number": 33 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data = python_data.set_index(['Name'])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 34 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pdata = python_data.transpose()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 35 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pdata.index = index_time" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 36 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pdata" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15
2015-01-12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2
2015-01-13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2
2015-01-13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2
2015-01-14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2
2015-01-14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3
2015-01-15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3
2015-01-15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3
2015-01-20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3
2015-01-20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3
2015-01-21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3
2015-01-21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3
2015-01-22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3
2015-01-22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3
2015-01-23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3
2015-01-26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3
2015-01-26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3
2015-01-27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4
2015-01-27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3
2015-01-28 NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3
2015-01-28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3
2015-01-29 NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3
2015-01-29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3
2015-01-30 NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5
2015-02-02 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 37, + "text": [ + "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 \\\n", + "2015-01-12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 2 3.5 2.5 \n", + "2015-01-13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 \n", + "2015-01-13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 \n", + "2015-01-14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 \n", + "2015-01-14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN 5 4.5 3.0 \n", + "2015-01-15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 \n", + "2015-01-15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 \n", + "2015-01-20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN \n", + "2015-01-20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 \n", + "2015-01-21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 NaN 4.0 3.0 \n", + "2015-01-21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 NaN 4.0 3.0 \n", + "2015-01-22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 \n", + "2015-01-22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0 \n", + "2015-01-23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0 \n", + "2015-01-26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 \n", + "2015-01-26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN \n", + "2015-01-27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 \n", + "2015-01-27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 4 4.0 3.0 \n", + "2015-01-28 NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 5 6.0 NaN \n", + "2015-01-28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 5 5.0 NaN \n", + "2015-01-29 NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 4 5.0 NaN \n", + "2015-01-29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 5 6.0 NaN \n", + "2015-01-30 NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN 5 NaN NaN \n", + "2015-02-02 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN NaN NaN NaN \n", + "\n", + "Name P14 P15 \n", + "2015-01-12 3 2 \n", + "2015-01-13 3 2 \n", + "2015-01-13 3 2 \n", + "2015-01-14 3 2 \n", + "2015-01-14 4 3 \n", + "2015-01-15 3 3 \n", + "2015-01-15 4 3 \n", + "2015-01-20 4 3 \n", + "2015-01-20 4 3 \n", + "2015-01-21 4 3 \n", + "2015-01-21 4 3 \n", + "2015-01-22 4 3 \n", + "2015-01-22 NaN 3 \n", + "2015-01-23 NaN 3 \n", + "2015-01-26 4 3 \n", + "2015-01-26 4 3 \n", + "2015-01-27 3 4 \n", + "2015-01-27 NaN 3 \n", + "2015-01-28 NaN 3 \n", + "2015-01-28 NaN 3 \n", + "2015-01-29 NaN 3 \n", + "2015-01-29 NaN 3 \n", + "2015-01-30 NaN 5 \n", + "2015-02-02 NaN NaN " + ] + } + ], + "prompt_number": 37 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "time_listr = ['01/12/2015', '01/13/2015', '01/14/2015', \n", + " '01/15/2015', '01/20/2015', '01/21/2015', \n", + " '01/22/2015', '01/26/2015', '01/27/2015', \n", + " '01/28/2015', '01/29/2015', '02/02/2015']\n", + "\n", + "ruby_time = pd.to_datetime(time_listr)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 38 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data = ruby_data.transpose()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 39 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data = pd.concat([ruby_data[:4], ruby_data[5:13]])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 40 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data = ruby_data.transpose()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 41 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data = ruby_data.transpose()\n", + "ruby_data.index = ruby_time" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 42 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R01R02R03R04R05R06R07R08R09R10R11R12R13R14R15nan
2015-01-12 2 3.0 3.0 2 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 1.0 4.5NaN
2015-01-13 2 3.5 4.5 4 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 2.0 5.0NaN
2015-01-14 4 4.5 4.0 4 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 2.0 4.0NaN
2015-01-15 3 4.0 3.5 4 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 3.0 5.0NaN
2015-01-20 3 4.5 6.0 5 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 3.0 5.0NaN
2015-01-21 5 4.5 4.5 5 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 3.5 5.0NaN
2015-01-22 2 3.5 4.0 4 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 2.0 4.0NaN
2015-01-26 3 6.0 5.0 5 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 4.0 4.5NaN
2015-01-27 4 4.0 5.0 4 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 4.0 4.0NaN
2015-01-28 4 5.0 4.5 6 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 3.0 4.5NaN
2015-01-29 4 4.5 4.0 5 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 4.0 4.0NaN
2015-02-02 3 5.0 5.0 6 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 4.0 4.5NaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 43, + "text": [ + " R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 \\\n", + "2015-01-12 2 3.0 3.0 2 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 \n", + "2015-01-13 2 3.5 4.5 4 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 \n", + "2015-01-14 4 4.5 4.0 4 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 \n", + "2015-01-15 3 4.0 3.5 4 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 \n", + "2015-01-20 3 4.5 6.0 5 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 \n", + "2015-01-21 5 4.5 4.5 5 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 \n", + "2015-01-22 2 3.5 4.0 4 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 \n", + "2015-01-26 3 6.0 5.0 5 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 \n", + "2015-01-27 4 4.0 5.0 4 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 \n", + "2015-01-28 4 5.0 4.5 6 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 \n", + "2015-01-29 4 4.5 4.0 5 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 \n", + "2015-02-02 3 5.0 5.0 6 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 \n", + "\n", + " R14 R15 NaN \n", + "2015-01-12 1.0 4.5 NaN \n", + "2015-01-13 2.0 5.0 NaN \n", + "2015-01-14 2.0 4.0 NaN \n", + "2015-01-15 3.0 5.0 NaN \n", + "2015-01-20 3.0 5.0 NaN \n", + "2015-01-21 3.5 5.0 NaN \n", + "2015-01-22 2.0 4.0 NaN \n", + "2015-01-26 4.0 4.5 NaN \n", + "2015-01-27 4.0 4.0 NaN \n", + "2015-01-28 3.0 4.5 NaN \n", + "2015-01-29 4.0 4.0 NaN \n", + "2015-02-02 4.0 4.5 NaN " + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data_hw = ruby_data_hw.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 44 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data_hw = pd.concat([ruby_data_hw[:3], ruby_data_hw[5:13]])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 45 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "time_listr2 = ['01/12/2015', '01/13/2015', '01/14/2015', \n", + " '01/20/2015', '01/21/2015', '01/22/2015', \n", + " '01/26/2015', '01/27/2015', '01/28/2015', \n", + " '01/29/2015', '02/02/2015']\n", + "\n", + "rtime_index2 = pd.to_datetime(time_listr2)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 46 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data_hw.index = rtime_index2" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 47 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data_hw" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R01R02R03R04R05R06R07R08R09R10R11R12R13R14R15
2015-01-12 4.0 3.0 4.0 3.0 2.0 3.5 3.0 3 3.0 3.0 4.0 3.0 3 2.0 4.0
2015-01-13 3.0 4.0 4.0 4.5 5.0 4.0 4.0 4 3.0 2.0 3.5 3.0 4 2.5 5.0
2015-01-14 3.0 4.5 5.5 3.0 4.5 5.5 3.0 5 3.0 4.0 3.5 3.0 5 2.0 4.0
2015-01-20 4.0 4.0 5.0 4.0 5.0 4.0 5.0 5 3.0 5.0 5.0 4.0 5 4.0 4.0
2015-01-21 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4 3.0 3.0 3.0 3.0 5 2.5 4.5
2015-01-22 3.0 4.0 4.5 4.0 3.0 3.5 4.5 3 4.0 3.5 4.0 3.0 5 2.0 5.0
2015-01-26 4.0 2.5 4.0 4.0 4.5 4.0 4.5 4 3.5 4.0 3.0 4.5 2 4.0 4.0
2015-01-27 3.0 3.0 4.0 5.0 3.0 3.0 4.0 3 3.0 3.5 3.0 3.0 4 2.0 4.5
2015-01-28 4.5 4.5 3.0 6.0 5.0 3.0 5.0 4 3.0 3.5 4.0 3.0 3 4.0 3.0
2015-01-29 4.0 4.0 4.0 5.0 4.0 3.0 4.5 4 4.0 3.0 4.5 3.0 4 3.5 3.5
2015-02-02 4.5 4.0 3.5 4.0 3.5 3.0 4.5NaN 3.0 3.0 NaN 3.0 4 4.5 4.0
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 48, + "text": [ + " R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 \\\n", + "2015-01-12 4.0 3.0 4.0 3.0 2.0 3.5 3.0 3 3.0 3.0 4.0 3.0 3 \n", + "2015-01-13 3.0 4.0 4.0 4.5 5.0 4.0 4.0 4 3.0 2.0 3.5 3.0 4 \n", + "2015-01-14 3.0 4.5 5.5 3.0 4.5 5.5 3.0 5 3.0 4.0 3.5 3.0 5 \n", + "2015-01-20 4.0 4.0 5.0 4.0 5.0 4.0 5.0 5 3.0 5.0 5.0 4.0 5 \n", + "2015-01-21 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4 3.0 3.0 3.0 3.0 5 \n", + "2015-01-22 3.0 4.0 4.5 4.0 3.0 3.5 4.5 3 4.0 3.5 4.0 3.0 5 \n", + "2015-01-26 4.0 2.5 4.0 4.0 4.5 4.0 4.5 4 3.5 4.0 3.0 4.5 2 \n", + "2015-01-27 3.0 3.0 4.0 5.0 3.0 3.0 4.0 3 3.0 3.5 3.0 3.0 4 \n", + "2015-01-28 4.5 4.5 3.0 6.0 5.0 3.0 5.0 4 3.0 3.5 4.0 3.0 3 \n", + "2015-01-29 4.0 4.0 4.0 5.0 4.0 3.0 4.5 4 4.0 3.0 4.5 3.0 4 \n", + "2015-02-02 4.5 4.0 3.5 4.0 3.5 3.0 4.5 NaN 3.0 3.0 NaN 3.0 4 \n", + "\n", + " R14 R15 \n", + "2015-01-12 2.0 4.0 \n", + "2015-01-13 2.5 5.0 \n", + "2015-01-14 2.0 4.0 \n", + "2015-01-20 4.0 4.0 \n", + "2015-01-21 2.5 4.5 \n", + "2015-01-22 2.0 5.0 \n", + "2015-01-26 4.0 4.0 \n", + "2015-01-27 2.0 4.5 \n", + "2015-01-28 4.0 3.0 \n", + "2015-01-29 3.5 3.5 \n", + "2015-02-02 4.5 4.0 " + ] + } + ], + "prompt_number": 48 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_data" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R01R02R03R04R05R06R07R08R09R10R11R12R13R14R15nan
2015-01-12 2 3.0 3.0 2 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 1.0 4.5NaN
2015-01-13 2 3.5 4.5 4 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 2.0 5.0NaN
2015-01-14 4 4.5 4.0 4 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 2.0 4.0NaN
2015-01-15 3 4.0 3.5 4 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 3.0 5.0NaN
2015-01-20 3 4.5 6.0 5 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 3.0 5.0NaN
2015-01-21 5 4.5 4.5 5 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 3.5 5.0NaN
2015-01-22 2 3.5 4.0 4 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 2.0 4.0NaN
2015-01-26 3 6.0 5.0 5 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 4.0 4.5NaN
2015-01-27 4 4.0 5.0 4 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 4.0 4.0NaN
2015-01-28 4 5.0 4.5 6 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 3.0 4.5NaN
2015-01-29 4 4.5 4.0 5 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 4.0 4.0NaN
2015-02-02 3 5.0 5.0 6 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 4.0 4.5NaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 49, + "text": [ + " R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 \\\n", + "2015-01-12 2 3.0 3.0 2 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 \n", + "2015-01-13 2 3.5 4.5 4 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 \n", + "2015-01-14 4 4.5 4.0 4 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 \n", + "2015-01-15 3 4.0 3.5 4 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 \n", + "2015-01-20 3 4.5 6.0 5 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 \n", + "2015-01-21 5 4.5 4.5 5 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 \n", + "2015-01-22 2 3.5 4.0 4 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 \n", + "2015-01-26 3 6.0 5.0 5 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 \n", + "2015-01-27 4 4.0 5.0 4 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 \n", + "2015-01-28 4 5.0 4.5 6 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 \n", + "2015-01-29 4 4.5 4.0 5 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 \n", + "2015-02-02 3 5.0 5.0 6 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 \n", + "\n", + " R14 R15 NaN \n", + "2015-01-12 1.0 4.5 NaN \n", + "2015-01-13 2.0 5.0 NaN \n", + "2015-01-14 2.0 4.0 NaN \n", + "2015-01-15 3.0 5.0 NaN \n", + "2015-01-20 3.0 5.0 NaN \n", + "2015-01-21 3.5 5.0 NaN \n", + "2015-01-22 2.0 4.0 NaN \n", + "2015-01-26 4.0 4.5 NaN \n", + "2015-01-27 4.0 4.0 NaN \n", + "2015-01-28 3.0 4.5 NaN \n", + "2015-01-29 4.0 4.0 NaN \n", + "2015-02-02 4.0 4.5 NaN " + ] + } + ], + "prompt_number": 49 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = pd.concat([ruby_data, ruby_data_hw])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 50 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = ruby_all.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 51 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = ruby_all[:15]" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 52 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = ruby_all.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 53 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R01R02R03R04R05R06R07R08R09R10R11R12R13R14R15
2015-01-12 2.0 3.0 3.0 2.0 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 1.0 4.5
2015-01-13 2.0 3.5 4.5 4.0 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 2.0 5.0
2015-01-14 4.0 4.5 4.0 4.0 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 2.0 4.0
2015-01-15 3.0 4.0 3.5 4.0 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 3.0 5.0
2015-01-20 3.0 4.5 6.0 5.0 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 3.0 5.0
2015-01-21 5.0 4.5 4.5 5.0 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 3.5 5.0
2015-01-22 2.0 3.5 4.0 4.0 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 2.0 4.0
2015-01-26 3.0 6.0 5.0 5.0 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 4.0 4.5
2015-01-27 4.0 4.0 5.0 4.0 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 4.0 4.0
2015-01-28 4.0 5.0 4.5 6.0 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 3.0 4.5
2015-01-29 4.0 4.5 4.0 5.0 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 4.0 4.0
2015-02-02 3.0 5.0 5.0 6.0 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 4.0 4.5
2015-01-12 4.0 3.0 4.0 3.0 2.0 3.5 3.0 3.0 3.0 3.0 4.0 3.0 3 2.0 4.0
2015-01-13 3.0 4.0 4.0 4.5 5.0 4.0 4.0 4.0 3.0 2.0 3.5 3.0 4 2.5 5.0
2015-01-14 3.0 4.5 5.5 3.0 4.5 5.5 3.0 5.0 3.0 4.0 3.5 3.0 5 2.0 4.0
2015-01-20 4.0 4.0 5.0 4.0 5.0 4.0 5.0 5.0 3.0 5.0 5.0 4.0 5 4.0 4.0
2015-01-21 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 3.0 3.0 3.0 3.0 5 2.5 4.5
2015-01-22 3.0 4.0 4.5 4.0 3.0 3.5 4.5 3.0 4.0 3.5 4.0 3.0 5 2.0 5.0
2015-01-26 4.0 2.5 4.0 4.0 4.5 4.0 4.5 4.0 3.5 4.0 3.0 4.5 2 4.0 4.0
2015-01-27 3.0 3.0 4.0 5.0 3.0 3.0 4.0 3.0 3.0 3.5 3.0 3.0 4 2.0 4.5
2015-01-28 4.5 4.5 3.0 6.0 5.0 3.0 5.0 4.0 3.0 3.5 4.0 3.0 3 4.0 3.0
2015-01-29 4.0 4.0 4.0 5.0 4.0 3.0 4.5 4.0 4.0 3.0 4.5 3.0 4 3.5 3.5
2015-02-02 4.5 4.0 3.5 4.0 3.5 3.0 4.5 NaN 3.0 3.0 NaN 3.0 4 4.5 4.0
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 54, + "text": [ + " R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 \\\n", + "2015-01-12 2.0 3.0 3.0 2.0 2.0 2.0 2.0 3.0 3.0 2.0 2.5 2.0 2 \n", + "2015-01-13 2.0 3.5 4.5 4.0 3.0 4.5 4.0 3.0 3.0 3.0 3.5 3.0 3 \n", + "2015-01-14 4.0 4.5 4.0 4.0 5.0 6.0 5.0 4.0 4.0 3.5 3.0 3.0 4 \n", + "2015-01-15 3.0 4.0 3.5 4.0 4.5 3.5 6.0 3.0 4.5 3.5 4.0 2.0 3 \n", + "2015-01-20 3.0 4.5 6.0 5.0 3.0 4.5 4.0 3.0 3.0 4.0 3.5 3.0 4 \n", + "2015-01-21 5.0 4.5 4.5 5.0 4.0 3.5 4.0 4.0 5.0 3.0 3.0 3.0 4 \n", + "2015-01-22 2.0 3.5 4.0 4.0 3.0 3.0 3.5 3.0 4.0 2.0 2.0 2.0 3 \n", + "2015-01-26 3.0 6.0 5.0 5.0 5.0 4.5 4.0 3.5 3.5 3.0 3.5 3.0 4 \n", + "2015-01-27 4.0 4.0 5.0 4.0 3.0 4.5 4.0 3.0 4.0 2.5 3.5 3.0 3 \n", + "2015-01-28 4.0 5.0 4.5 6.0 3.0 4.0 4.0 4.0 3.0 3.0 4.5 4.0 4 \n", + "2015-01-29 4.0 4.5 4.0 5.0 4.0 3.5 4.0 4.0 3.0 2.0 6.0 3.5 4 \n", + "2015-02-02 3.0 5.0 5.0 6.0 NaN 4.0 5.0 NaN 5.0 3.5 NaN 3.5 5 \n", + "2015-01-12 4.0 3.0 4.0 3.0 2.0 3.5 3.0 3.0 3.0 3.0 4.0 3.0 3 \n", + "2015-01-13 3.0 4.0 4.0 4.5 5.0 4.0 4.0 4.0 3.0 2.0 3.5 3.0 4 \n", + "2015-01-14 3.0 4.5 5.5 3.0 4.5 5.5 3.0 5.0 3.0 4.0 3.5 3.0 5 \n", + "2015-01-20 4.0 4.0 5.0 4.0 5.0 4.0 5.0 5.0 3.0 5.0 5.0 4.0 5 \n", + "2015-01-21 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 3.0 3.0 3.0 3.0 5 \n", + "2015-01-22 3.0 4.0 4.5 4.0 3.0 3.5 4.5 3.0 4.0 3.5 4.0 3.0 5 \n", + "2015-01-26 4.0 2.5 4.0 4.0 4.5 4.0 4.5 4.0 3.5 4.0 3.0 4.5 2 \n", + "2015-01-27 3.0 3.0 4.0 5.0 3.0 3.0 4.0 3.0 3.0 3.5 3.0 3.0 4 \n", + "2015-01-28 4.5 4.5 3.0 6.0 5.0 3.0 5.0 4.0 3.0 3.5 4.0 3.0 3 \n", + "2015-01-29 4.0 4.0 4.0 5.0 4.0 3.0 4.5 4.0 4.0 3.0 4.5 3.0 4 \n", + "2015-02-02 4.5 4.0 3.5 4.0 3.5 3.0 4.5 NaN 3.0 3.0 NaN 3.0 4 \n", + "\n", + " R14 R15 \n", + "2015-01-12 1.0 4.5 \n", + "2015-01-13 2.0 5.0 \n", + "2015-01-14 2.0 4.0 \n", + "2015-01-15 3.0 5.0 \n", + "2015-01-20 3.0 5.0 \n", + "2015-01-21 3.5 5.0 \n", + "2015-01-22 2.0 4.0 \n", + "2015-01-26 4.0 4.5 \n", + "2015-01-27 4.0 4.0 \n", + "2015-01-28 3.0 4.5 \n", + "2015-01-29 4.0 4.0 \n", + "2015-02-02 4.0 4.5 \n", + "2015-01-12 2.0 4.0 \n", + "2015-01-13 2.5 5.0 \n", + "2015-01-14 2.0 4.0 \n", + "2015-01-20 4.0 4.0 \n", + "2015-01-21 2.5 4.5 \n", + "2015-01-22 2.0 5.0 \n", + "2015-01-26 4.0 4.0 \n", + "2015-01-27 2.0 4.5 \n", + "2015-01-28 4.0 3.0 \n", + "2015-01-29 3.5 3.5 \n", + "2015-02-02 4.5 4.0 " + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "The Story of Ruby Student 6" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "r6_story = ruby_all[['R06']]" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 55 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "r6_story.plot(figsize=(17,9), color='red', ylim=(0,6))\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 56, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAIDCAYAAABB8u50AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecE3X+BvBnUmaySXbpVkSkhWKhKSKdZQsqIOqhICiW\nO73TE5Xei/SigP3Us3D6U1Gquo0mIlUWEARXrKACgrRNsskkmfn9kd2NIGWXzeab8rxfr3ud7E4y\njxKWPJnvfL6SrusgIiIiIiIiothlEB2AiIiIiIiIiCqG5Z6IiIiIiIgoxrHcExEREREREcU4lnsi\nIiIiIiKiGMdyT0RERERERBTjWO6JiIiIiIiIYpxJdIBwcDgcIwH0AGAG8HxBQcFbgiMRERERERER\nRUzMX7l3OBydAbQtKCi4CUBnAPWEBiIiIiIiIiKKsHi4cp8OYKfD4VgCIAXAUMF5iIiIiIiIiCIq\nHsp9LQBXALgVwav2ywA0FpqIiIiIiIiIKILiodwfAbCnoKDAD+Bbh8PhcTgcNQsKCo6cfqCu67ok\nSZFPmEg++gi4807g+eeBRx8VnYaIiIiIiCienLXQxkO5XwdgEIBnHA7HZQBsAP4404GSJOHw4cJI\nZks4ye8thAWA8+ARFMXYf+tatZL5+qAz4muDzoWvDzobvjboXPj6oLPha4POpVat5LN+L+YH6hUU\nFHwCYJvD4diM4JL8fxUUFOiCYyWmQADyylzRKYiIiIiIiBJOPFy5R0FBwXDRGQgwbdkMw7FjomMQ\nERERERElnJi/ck/RQ8nLFh2BiIiIiIgoIbHcU9jIuVmiIxARERERESUklnsKC8NPP8JU8A10q010\nFCIiIiIiooTDck9hUbIkX+3cVXASIiIiIiKixMNyT2Eh5xaX+7QMwUmIiIiIiIgSD8s9VZhUeBLm\n9evgu+Y6BC69VHQcIiIiIiKihBMXW+GRWOY1qyH5fFDTM0VHISIiIiIiirj8/C8xbtxIXHVVPUiS\nBJfLhcsuuxzjx0/G22//Fxs2fAGTyYjHHx+MJk2aoaioCLNnT8PBgwfg9/vx5JPD0LhxkwplYLmn\nClOKp+Sr6ZmQjh0VnIaIiIiIiCiyJElC69Y3YMKEKaVfmzhxDD744F3s2LENr776Fg4dOogxY4bh\n1Vffxrvvvo369Rti7NhJ+P777/Dtt9+w3JNggQDklbkIXHQx/Ne1gHnNStGJiIiIiIgogdkmjIGy\nfElYn9Pb4za4Jkw+6/d1XYeu66W/9vl8+OOPI2ja9Gpcf30bAMDFF1+CQCCA48ePY8uWTejaNQ1P\nPfVv2Gw2PPXU8Apn5D33VCGm/C9hOHIkOEjPwJcTERERERElpvz8L/Hvfz+M/v374MEH+6NTpy5w\nu12w2+2lx1itNrhcThw/fhxOZyGeeeY5tGvXAS+8MLfC5+eVe6oQOS8HAKCmdxechIiIiIiICHBN\nmHzOq+yVpWXL1pg4cSpOnjyBJ554FJdcchkOHPgVbre79JiSsl+lShW0b98RAHDTTR3wv/+9VeHz\n81IrVYiSkwVdUaB27Cw6ChERERERkXApKVUwbtzTmDFjMhyOJti0aSN0XcfBgweh6zqqVKmKa69t\njvXr1wEAduzIR7169St8Xl65pwtm2L8Ppj1fw5uaBthsouMQEREREREJIUkSJEkq/XXdulfhzjvv\nwgcf/B+uu645Hn74fui6Vnpv/YAB92PGjKfxyCMPwGQyYcyYSRXOwHJPF0zOzQYAqGncAo+IiIiI\niBJXixat0KJFq1O+du+9D5T+8wMP/OOU76WkpGDKlFlhzcBl+XTBlLzics/97YmIiIiIiIRiuacL\n43TCvG4t/E2vhlb7CtFpiIiIiIiIEhrLPV0Qee0aSKoKbwav2hMREREREYnGck8XRM7NAsD77YmI\niIiIiKIByz2Vn6ZBycuBVrMm/C1bi05DRERERESU8FjuqdxMO7bBcPh3qN0yAANfQkRERERERKKx\nmVG5yTnBJfne9O6CkxARERERERHAck8XQM7LgS7L8HXuIjoKERERERERgeWeysnw268w79wB303t\noduTRcchIiIiIiIisNxTOcl5OQAAbzqn5BMREREREUULlnsqF26BR0REREREFH1Y7qns3G7In38G\nf+Mm0K6sKzoNERERERERFWO5pzKTP/8MkscDlVPyiYiIiIiIogrLPZWZnJsNAPByST4REREREVFU\nYbmnstF1yHnZ0KpXh7/19aLTEBERERER0Z+w3FOZmHbugPHgAaip6YDRKDoOERERERER/QnLPZWJ\nnFM8JZ9b4BEREREREUUdlnsqEzkvG7rJBLVLqugoREREREREdBqWezovw8EDMG/fBl/bdtBTqoiO\nQ0RERERERKdhuafzklfkAuCSfCIiIiIiomjFck/nJecG77cvyxZ4uj0FAGD89ZdKzUREREREREQh\nLPd0bkVFkNeugb9hI2j16p/3cH+LltBSqkDOywF0PQIBiYiIiIiIiOWezkn+Yi0ktxtqGa7aAwDM\nZqip3WD8ZT+Me3ZXbjgiIiIiIiICwHJP5yHnZgMA1IzuZX5MyQcBSvFyfiIiIiIiIqpcLPd0droO\nOS8HWtWq8F3fpswPU1PToBsMpR8MEBERERERUeViuaezMn69C8Zff4HaNQ0wmcr8OL1adfhuuBGm\nrVsgHT5ciQmJiIiIiIgIYLmncyhZVn8hW+Cp6d0h6TrklbnhjkVERERERESnYbmns5LzsqEbjVC7\ndiv3Y0s+EFC4NJ+IiIiIiKjSsdzTGUm//w5T/lb42rSFXrVauR8faNgIgbpXwbx6JaCqlZCQiIiI\niIiISrDc0xnJK3Mh6TrU9LJPyT+FJMGbngmDywnz+nXhDUdERERERESnYLmnMypZTn8h99uXKPlg\nQM7j0nwiIiIiIqLKxHJPf+X1wrxmFfz16iPQoOEFP43vxpugJadAyckGdD2MAYmIiIiIiOjPWO7p\nL8zr18HgckJNu/Cr9gAAWYbaJRXGfT/B+G1BeMIRERERERHRX7Dc01+UboGXcYH32/+JmpYBAJBz\nsir8XERERERERHRmLPd0Kl2HnJcDLaUKfG3aVvjp1G4Z0CUJCu+7JyIiIiIiqjQs93QK4zd7YNz3\nM9SuqYDZXOHn02vUgL/1DTBt2QTp6B9hSEhERERERESnY7mnU5RMtq/w/fZ/4s3oDknTIK/MC9tz\nEhERERERUQjLPZ1CycmCbjBATU0L23OWfFAg53JpPhERERERUWVguadS0h9/wPTlZvivbwO9eo2w\nPW+gcRME6lwJedUKwOcL2/MSERERERFREMs9lZJX5EDSdXjDuCQfACBJUNMyYCg8CfPG9eF9biIi\nIiIiImK5pxA5LwdAeLbAO503PficXJpPREREREQUfiz3FKSqkFetQKBOXQQaOcL+9L6b2kOz2UsH\n9hEREREREVH4sNwTAMC8cT0MzkJ4MzIBSQr/CRQFvs5dYfrhexi/2xv+5yciIiIiIkpgLPcEAJBz\nswCEdwu803nTOTWfiIiIiIioMrDcE6DrUHKyoNns8N3UvtJOo6amQ5ek0g8SiIiIiIiIKDxY7gnG\nvd/C+PNP8HVJBWS50s6jX3QR/C1bwbxpA6TjxyrtPERERERERImG5Z5Kl8mXLJuvTGpaJqRAILjn\nPREREREREYUFyz1Bzs2CLklQU9Mr/VzcEo+IiIiIiCj8WO4TnHTsKMybN8Lf6nrotWpV+vkCza5G\n4PLakFflAX5/pZ+PiIiIiIgoEbDcJzh5ZR4kTYMagSX5AABJgpqWAcPx4zBv2RSZcxIREREREcU5\nlvsEJ+eV3G/fPWLnLPkgQc7h1HwiIiIiIqJwYLlPZD4f5FUrEah9BQJNmkbstGr7TtCt1tIPFoiI\niIiIiKhiWO4TmHnzRhhOHA9eSZekyJ3YYoHasTNMe7+F4YfvI3deIiIiIiKiOMVyn8AiuQXe6dTi\n2wAUXr0nIiIiIiKqMJPoAOHgcDjyAZwo/uUPBQUFD4rMEyvk3CzoVht8N3WI+LnVtIziDNkoevjR\niJ+fiIiIiIgonsR8uXc4HBYAKCgo6CI6Sywxfr8Xpu+/g7f7rYDFEvHzaxdfAl/zFjBv+ALSyRPQ\nU6pEPAMREREREVG8iIdl+dcBsDocjhyHw7HS4XC0ER0oFsi5OQAANSNyU/JPp6ZlQvL7Ia9eKSwD\nERERERFRPIiHcu8CMKugoCADwCMA3nE4HPHw71WpSrfAS00XlqHkg4WSe/+JiIiIiIjowki6rovO\nUCEOh0MGYCgoKPAU/3oTgNsLCgp+PcPhsf0vGy7HjwO1agEtWwKbNonLoetA7dqA1wscOgQYjeKy\nEBERERERRb+zbnMW8/fcA7gfwLUAHnU4HJcBSAFw4GwHHz5cGKlcUUtZsgQpfj9cXdLgFvzfw56a\ngaQFb+BY1ir429woNEutWsl8fdAZ8bVB58LXB50NXxt0Lnx90NnwtUHnUqtW8lm/Fw/L118HkOJw\nONYCeA/A/QUFBZrgTFFNzskCAHjTxd1vX0It3oZPyc0SnISIiIiIiCh2xfyV+4KCAj+AAaJzxAy/\nH/KqPAQuvQyBq68RnQZqh07QLRbIedlwjZ0oOg4REREREVFMiocr91QO5i83w3DsGNS0TEA66+0a\nkWO1Qu3QCaZv9sDw80+i0xAREREREcUklvsEUzKZXs3IFJwkRC2+PaBkgj8RERERERGVD8t9gpFz\ns6AnJUFt30l0lFJqWgYAQMnhffdEREREREQXguU+gRh+/AGmbwugduwMJCWJjlNKu+xy+K65Dub1\n6yA5ORmUiIiIiIiovFjuE4hSvOxdTYueJfkl1LQMSD4fzGtWi45CREREREQUc1juE4icmwMgtAw+\nmqgZwfvuuSUeERERERFR+bHcJwip8CTMG9bBd21zaJdeJjrOX/iva4HARRdDXpEDaJroOERERERE\nRDGF5T5BmNesguTzQU2PviX5AACDAWpaBgxHjsCU/6XoNERERERERDGF5T5BlEyij9pyj9AsAG6J\nR0REREREVD4s94kgEIC8MheBiy+B/9rmotOcldqxM3RFgZLDck9ERERERFQeLPcJwLT1Sxj++CM4\nSM8Qxb/ldjt87TrAtHsXDL/sF52GiIiIiIgoZkRx06NwKd0CL7274CTn5y1Zmp/Lq/dERERERERl\nxXKfAOTcLOiKArVDJ9FRzqtkJgDvuyciIiIiIio7lvs4Z9j3M0x7dgeLvc0mOs55aVfUgb9JM8jr\n1gIul+g4REREREREMYHlPs7JeTkAQpPoY4E3ozskrxfy2jWioxAREREREcUElvs4p+RG/xZ4p1PT\nMgAEbycgIiIiIiKi82O5j2dOJ8xffA5/s2ugXV5bdJoy87dsDa1mzeCqA00THYeIiIiIiCjqsdzH\nMfmz1ZBUFd6M2LlqDwAwGqGmpsP4+yGYdmwTnYaIiIiIiCjqsdzHsZKJ87F0v30Jb/G2fdwSj4iI\niIiI6PxY7uOVpkHJy4FWsxb8LVqJTlNuvs5doJvNLPdERERERERlwHIfp0zb82E4/Du8aRmAIfZ+\nm/XkFPhuag/zzh0wHPhNdBwiIiIiIqKoFnutj8pELp2S311wkgtXMuGfV++JiIiIiIjOjeU+Tsm5\nOdBlGb5OnUVHuWDe4lkBJbMDiIiIiIiI6MxY7uOQ4ddfYN71FXw3tYduTxYd54Jpda+C39EY8to1\ngNstOg4REREREVHUYrmPQ3JeDgDAmxG7S/JLqOndIXk8kNd9JjoKERERERFR1GK5j0Ol99vH4BZ4\npytdmp/DpflERERERERnw3Ifb1wuyJ9/Bn+TptDqXCk6TYX5r78BWrVqwfvudV10HCIiIiIioqjE\nch9n5M8/g+T1xsVVewCA0Qg1NR3Ggwdg2vWV6DRERERERERRieU+zpRMlvfG8BZ4p1OLZwfIOVmC\nkxAREREREUUnlvt4ommQc7Oh1agBf6vWotOEjdolFbrJxC3xiIiIiIiIzoLlPo6Ydu6A8dBBqKnp\ngNEoOk7Y6ClV4GvbDuZt+TAcOig6DhERERERUdRhuY8jJcvWvelxcr/9n6hpGQAAeUWu4CRERERE\nRETRh+U+2pVjQryclwPdZIKvS2olBhKjZIYA77snIiKiU3A3HSIiACz3UU1Z/CFqNKsPww/fn/dY\nw8EDMO/YBl/b9tCTUyKQLrK0evXhb9AQ8trVgMcjOg4RhYl08gSUD/4PKQPuQo1GdfgBHhGVnc+H\npOfmoobjSiiLPxSdpuwCAVTt2h4YNUp0EiKKMyz3UUo6dhT2kUNgOHIEpu++Pe/xcl4OAEDNiL8l\n+SXU9O6Q3G7IX6wVHYWIKkAqPAll4XtIufdu1GhaHymPPQwlJwuG48dh+mq76HhEFANMW7egWlon\n2J8eF/zZsftr0ZHKTHK7YN71FTB3LqQTx0XHIaI4wnIfpWzTnobh6NEyHy/nFt9vHy/725+BWjxL\nQM7l1HyiWCMVnoTy4ftIubdvsNA/+g8o2Z8i0KARXCPHonD2PNERiSgGSCdPwD5iMKre3A2m3bug\n3tRedKQLV1QE5cMPRKcgojhiEh2A/sr01XZY3vpv2R9QVAR57Rr4GzmgXVWv8oIJ5rvhRmhVqgbL\n/fQ5gCSJjkRE5yA5CyHnZEFZtgTyqjxIXi8AwN+kGby9esPbszcCDRoCAMzruCKHiM5B1yF/vAz2\n0cNgPHgA/kYOOGfPg24wQr41TXS6C5b09hvwPPB3vqchorBguY82mgb78MGQdB1q126QV60470Pk\nL9ZCKiqCGsdX7QEAJhPU1G6wLPoQxt1fI9DsatGJiOg0krMQcm52sNCvzP1ToW8Kb8/iQt+wkeCU\nRBRLDL/sh33kECg5WdAVBa7ho+F+7AlAUWDavEl0vAox7fkapvwv4W91vegoRBQHWO6jjPL+uzBv\n3QJPz97wt2hVtnKfE1ymrmZ0r+x4wqnp3WFZ9CGU3Cy4We6JooPTCWVFDpSli4OFvnjopb9xk1Ch\nb+QQHJKIYo7fj6TXXoZt+hRIbhfU9h3hnPUsAvUbik4WHlWrAsePw7LgTThZ7okoDFjuo4h0/Bjs\nT4+DbrXCNXEKlCWLzv8gXYeclw2talX4Wt9Q+SEFU7ukQjcaIedmw/3kUNFxiBKXy3VqoS8qAgD4\nGzng7XV7sNA7GgsOSUSxyrRjG+yDB8H81XZo1aujcPpseO/qF1/L19u1Q2DnLliWfATXpKnQU6qI\nTkREMY7lPorYZkyB4cgROMdMgHZ57TI9xrhrJ4y//QrPHX0AU/z/durVqsN3w40wb1wP6fBh6LVq\niY5ElDhcLsgrc2FZuhjyipxQoW/YKHiFvtftCDRuIjgkEcU0pxO2GZOR9OrLkDQNnrv6wTlhCvQa\nNUQnCz+DAZ7+98E2dRKUjxbCc/9DohMRUYyL/zYYI4w7v4Lljdfgr98ARY88VubHKXnFS/LT4/x+\n+z9R07tD3vAF5JW58N59j+g4RPHN7Ya8MhfK0sVQVuRAcrsBAP4GDU8t9PF0NY2IhJBzsmAfMRjG\nX3+Bv159OGfPg699R9GxKpWnb39YZ0yBZcGb8Ax8kD9LiahCWO6jga4jeeQQSJoG59RZgCyX+aFy\nbhZ0oxFq126VGDC6qOmZwMQxUHKyWO6JKoPbDXllHpRli6HkZYcKff0GxVPub0egSVO+CSWisDAc\n+A32UcOgfLIMutkM11PD4H5iCGCxiI5W6bSLL4GacTOUT5fDtGMb/M1bio5ERDGM5T4KKB/8H8yb\nN8J7S0/4uqSW+XHS77/DnL8VarsO0KtUrcSE0SXQoCH8V9WDec0qwOsFFEV0JKLYV1RUXOgXQcnN\ngeR2AQD89eqHCn3TZiz0RBQ+gQAsb74O25SJMDgLod54E5yz5yXcAM6iewdC+XR5cLAeyz0RVQDL\nvWDSyROwTxoHPSkJzqenleuxyoocAMFl6glFkqCmZ8L6yoswr19Xrg9EiOhPioogr1oRLPQ52aFC\nf1W90FC8Zlez0BNR2Bl37UTy0EEwb/0SWpWqKHzmOXj6DQAMBtHRIs7XqSsCV9SB5aOFcE2cAt2e\nLDoSEcUolnvBrDOnwnD4d7hGjoVW+4pyPVbOLbnfPqMyokU1Nb07rK+8CDkvm+WeqDw8ntJCL+dk\nw+ByAgACda+Ct9ft8PTsjcDV17DQE1HlcLlgmz0dSS8/DykQgOf2v8E5aRr0iy4SnUwcoxGee+6F\nbfpkKIs+hOfe+0UnIqIYxXIvkHH310h6/T/wX1UP7n89Xr4HezyQ16yCv36D+NnvtRx8bdpCS06B\nkpsN15SZLCJE5+LxQF69EsrSRZBzs2FwFgIAAlfWhfvBf8Db8zb4r7mOf46IqFKZV+UhedhTMO77\nGYE6dVE48xn4Emhm0Ll4+vaHdda04GA9lnsiukAs96LoOuwjh0AKBOCaOrPc942b16+D5HZBTUuc\nKfmnkGWoXbvBsnQRjAXfcPstotMVfwCoLF0EOScrVOjr1IX7/oeChf7a5iz0RFTppEOHYB87HJYl\ni6CbTHA//hRcTw0DrFbR0aKGdullUNMyoWR/Ehysd10L0ZGIKAax3AuiLFoIecMX8GbeDDU1vfyP\nz80CkFhb4J1OTcuAZekiyLlZKGK5JwK8XpxS6AtPAgACda6Ee+CDwUJ/XQsWeiKKDE2D5X9vwfb0\neBhOHIev1fUonDM/OJyT/sJz70Ao2Z/AsuAtOFnuiegCsNwLIBWehG3CGOgWC5xPTy//E+g65Lwc\naClV4GvTNvwBY4Samg7dYICSm42ix58SHYdIDK8X8meroCxbAjnrk1Chv6IO3PfeHyz0zVuy0BNR\nRBm/2YPkIYNg3rwRWnIKCmc8A899DyTkwLyyUrt0Q+Dy2lA++gDOCZMBu110JCKKMSz3Alhnz4Dx\n0EG4ho6EdmXdcj/euGc3jPv3wXPb7YDZHP6AMUKvUQP+1jfA9OVmSH/8Ab1GDdGRiCJDVU8t9CdP\nAAACta+Ae8DAYKFv0YqFnogir6gI1rmzYH1+HiSfD56eveGaPB3aJZeKThb9SgbrzZwKy5KP4Ol/\nn+hERBRjWO4jzFjwDZJefSl43+tjT1zQc8h5JVPyE2wLvDPwpneHefNGyCtz4e3TV3QcosqjqpDX\nrg4V+hPHAQCBy2vD3W8AvL16w9+yNQs9EQljXrsG9qFPwPTjDwjUvgLO6bP5XqWcPP0GwDp7OiwL\n3mC5J6JyY7mPpJIhen4/nFNmAElJF/Q0Sk4WdIMBKifMBmcOTB4POS+H5Z7ij6pC/nwN5GVLoHz6\ncajQX3Y53HffEyr0XOZKRAJJR47APn4ULAvfg24wwP3Pf8M1dCSXlV8A7bLLoaZlQMnJgmnnjuBO\nJkREZcRyH0HK0kWQ162FNy0DasaFfZItHTkC09Yt8LVpC706l6EHHI0RqFMX8qoVgKoCsiw6ElHF\n+Hwwf74GyrIlUD5dDsPxPxf6fvD27A1/q+tZ6IlIPF2H8t47sE8YDcOxY/A1bwHnnPkspBXkGTAQ\nSk4WLAvehHPms6LjEFEMYbmPFKcTtvGjoSsKnJNnXPDTyCtyIOl64m6BdzpJgjc9A9bXXoF50wb4\nOnQSnYio/Hw+mNethbJscbDQHzsGAAhcehncffrC2/N2+Fuz0BNR9DB+txf2IYMgr18HzWaHc8oM\nFD3wD8BoFB0t5qld0xC47HIoH34A5/jJgM0mOhIRxQi+U4wQ2zMzYTzwG9yPDoJ2Vb0Lfh4lLwcA\nLvjKfzwquZ9PLt4ekCgm+P0wr1kF+1P/Ro2rG6DqXb2R9M7b0BUL3H9/BMeW5+Lott1wTZ4B/w1t\nWOyJKDp4vbDOmoZqndtCXr8O3sxbcGzdZhT9/Z8s9uFiMsHTbwAMzkJYli4SnYaIYgiv3EeAce+3\nSHr5+eDWVBXZsk1VYV69EoEr6yLQsFH4AsY4X9t20Gx2KDlZcE2axoFiFL38fpi/+Dx4hf6TZTAc\nPQoACFx8CdwPPRy8Qs8iT0RRyrx+HexDBsH03V4ELr0MzqmzoN7SQ3SsuOTpNwDWZ2YGB+v1GyA6\nDhHFCJb7yqbrsI8cGhyi9/R0wGq94Kcyb/gCBmch3P36s8D+maLA1yUVysdLYfxuLz/4oOji98O8\nfh2UpYuhfLoMhj/+AAAELroYRQ/+A95et8N3w40s9EQUtaRjR2GbOBZJ7y6ALklwP/Qw3CPHQk9O\nER0tbmm1r4CamgYlLwfGXTsRuPoa0ZGIKAaw3Fcy+eOlkNeuhtq1G9Tut1TsuYqXnfN++7/ypmdC\n+Xgp5NxsFLHck2h+P8wbvggV+iNHAABarYtQ9MDfQ4WeS1iJKJrpOpQP34d9/CgYjhyBv9k1KJwz\nL7hLB1U6z4D7oeTlIOl/b8I5fY7oOEQUA1juK5PLBfu4UdBlGc6pMyt2tV3XoeRkQ7Mnw9e2Xfgy\nxgk1NR26JEHOzULRo4+LjkOJKBAIFfpPloYKfc1aKLr/oWChb9OWhZ6IYoLhxx+QPOxJyJ+thm61\nwjl+Mooe/hdg4lvHSFG7pSNwyaVQFr4P57inK7T6k4gSA39CVyLb3Nkw/voLXE8MQaBegwo9l3Hv\ntzDu+wneHrdxu7cz0GvVgr9la5g3b4R07Cj0atVFR6JEEAjAvHE9lKWLoHy8DIYjhwEUF/qBDwYL\n/Y03sdATUexQVSS99Bxsc2ZA8njgTU2Dc8Yz0OpcKTpZ4ikerGd7ZiaUZYvhvfse0YmIKMqx3FcS\n4/d7kfTifAQurw33oMEVfj45J7gk35vOJflno2Z0h3nrFsirVsB7Rx/RcSheBQIwb9oQKvSHfwcA\naDVroui+B+HteVtwdQ2vbhFRjDFt3oTkoYNg2rMbgYsuhuu5l+Ht2ZtzfgTy3HMvrM/OQtLbb7Dc\nE9F58d1nZdB12EcNg+TzwTlpWlj2J5XzsqFLEtTU9DAEjE/etEzYpk6CnJfNck/hVbrkfhHkj5fB\n+PshAIBWowaK7n0gWOhvas9CT0QxSTpxHLbJE5H01usAgKL7HoRrzHjoVaoKTkbaFXWgdu0GZWUe\njLu/RqD3MkxhAAAgAElEQVRpM9GRiCiK8Z1oJZA//Rjy6pVQO3WBemvPCj+fdPQozJs3wt/6Bug1\na4YhYXwKNG2GQO0rIK9cAfh8gNksOhLFMk2DefNGKEsXAZ8uR9UDB4Jfrl4dRQPuDxb6dh1Y6Iko\nduk6lGWLYRs9HMbfD8HfuAkKZ88PbslJUcMz4H4oK/Ng+d+bcE2dJToOEUUxvisNN7cb9rEjoJvN\ncE6bHZalbPLqFZA0jUvyz0eSoKZlIOmN12Desil4JZWoPDQNps2boCwLLrk3HgwWetSogaIBA+Ht\ncRt87Tuy0BNRzDPs+xn2EYOhrMiFbrHAOXo8iv75b871iUJqWgYCF18Cy8L34RozkYP1iOisuLFy\nmFnnz4Hxl/0oeuQxBBo0DMtzyqtWAgDU9O5heb545s0I/jcqmVFAdF6aBtOmjbCNGY7qzZugWs8M\nWF97BZLXg6L+9+H4+4uBAwfgnDMfvs5dWeyJKLb5/Uh6YT6qd2wDZUUu1I5dcHTNBhQNGsxiH63M\nZnj69YfhxHEoy5eITkNEUYzvUsPI8MP3sD4/D4HLLofryaHhe94TxxG4og4CjZuE7Tnjle+mDtCt\nVsh52XBNnCI6DkUrTYPpyy1Qli+GsmwJjAd+C365alUU9RsAb8/e8HXoFLq1w2wG4BGXl4goDEz5\nXyJ58CCYvt4JrWZNFM6eF5xRw4F5Uc/T715Y585B0oI34b2rn+g4RBSl4qLcOxyOiwBsBZBaUFDw\nrZAQug77mOGQVDVYKu32sD69mp7Jv3zLwmKB2rELlOxPYPzhuwpvQUhxRNNg2roFyrIlUJYvgfG3\nX4NfrloVRX37w9urN3wdOnNWAxHFHanwJKzTnkbS6/+BpOso6jcArnGToFevIToalZF2ZV34OneF\nvHoljN/s4QUfIjqjmC/3DofDDOAVAC6ROeScrODytg6dgtvGhJk3jffbl5Wa0R1K9ieQc7NR9Mhj\nouOQSLp+aqH/9RcAgFalKjx33wNvr95QO3TmUlQiilvyJ8thHzUUxgO/wd+gIZyz53EmTYwq6j8Q\n8uqVwcF6k2eIjkNEUSjmyz2AWQBeAjBSWIKiItjHDIduMoVtiN6f6VZbcCo3lYnaLbhdIMt9gtJ1\nmPK/DBX6X/YDALSUKvDc1S9Y6Dt2YaEnorhm+PUX2EcOhZL9CXRZhmvoSLgffwpQFNHR6AKpmTdD\nq3URLB/8H1yjJwBJSaIjEVGUiely73A4BgI4XFBQkOtwOEYCELJu3frcszDu+xnufz2OQCNH2J9f\n7dyVfxmXg3bxJfC1aAnzxvWQThznPr2JQNdh2p4PZeniYKHfvw8AoCWnwNOnb6jQ888REcW7QABJ\nr78C67TJMLicUNt1gHPW3LAN+SWBzGZ4+vaHdf4zUD5eCu/f7o7o6aWTJwBd5/sqIlECARh//hGo\n1eKsh8R0uQdwPwDd4XB0A9AcwFsOh6NXQUHBoUgFMPz0I6zPPYvAJZfCPWR4WJ9bV4JXFksmwFPZ\nqWmZMG/Lh7x6Jby33SE6DlUGXYdpx7ZQod/3M4DiQv+3u4OFvhM/GIsZxbsQGEq2HySicjPt3AH7\n4Mdh3r4NWrVqODntpeDwtXie2WMyAgAMxYNR413RPffCOv8ZWBa8GfFyX6XPbTAc+QNHP9sA2GwR\nPTdRwtF1GPbvg2l7Psz5W2HathXmHdshuV2Arp/1YZJ+jm/GEofDsRrAw+cZqBf+f9mePYHly4F3\n3wX69g3vcx89Cnz4IfDAA9x+q7y2bQNatgT69wcWLBCdhsJF14H8fOCDD4CFC4Effwx+PTkZ6NUL\n6NMHSE9noY9FHg/QrBnw88/Ajh3BfyaisnE6gfHjgblzAU0DBgwA5swBatUSnazyqSpw7bXA3r3A\n1q1A8+aiE53fyZNAlSpAjx7AsmXlf3xaGrBiBbB7N9AkgoP16tQB9u8HRo0CpnBHIqKwOnwY2LIl\n+L/Nm4P/f/hw6PuSBDgcwDffALp+1k9sE67cHz5cGLZzynnZqHJPH6g3tceJxZ/E9yfjsUbXUb15\nE0ieIvzx9fdl+nCkVq1khPP1QWGi6zDt3BG8Qr9sMYw//wQA0Gx2qJk3w9vr9uCtKxZLpUXgayMy\n5NwsVOl/F9R2HXBi0ccx8zOVrw86m0i8NuS8bNiHD4bxl/3wX1UPzllz4evYuVLPGW3Ma1ahap/b\n4Lu+DY4vzwEMBtGRzkkqPIma9WsDPXrg8OvvlPvx8rLFqPLQfXA//ChcT0+rhIRnVr1FUxh//QW6\nLOPY2o3ckagS8e+VOOd0wrxzB0zb8oNX5Lflw7jvp1MOCVxRB74WreBv3hL+lq3gv/Y66LKCWrVr\nnrPcx83l4IKCgi4RPaHHA/uoYdCNxkoZokcVJElQ0zKR9PZ/YfpyC/w3thWdiMpD12Ha9VWw0C9d\ndEqh99z+t2Ch75JaqYWeIk9N7w5veiaU3GwoSz6Ct/edoiMRRS3DwQOwjx4OZfkS6CYTXE8OgfuJ\noQk5ZM3XuSu8t/aC8vFSKB/8H7x33yM6UqVSM2+BVrMmLB+8C9fo8RH9u1CXJEiqCvuoYTjxfx/x\n/S/R+fh8MO35Gqb8rcEl9tu2wljwDSRNKz1Eq14d3tS00iLva94K+plWXqnqeU8XN+U+0qwvzofx\n55/gfvhfCDRpKjoOnYGanoGkt/8LJS+b5T4W6DqMu3bCsqy40P8UXHKvW23w3H4nvD2LC30CvnFN\nJM7JMyB/thq28aOhpmVAtyeLjkQUXTQNljdfh23KRBgKT8J3fRsUzpmf8PueOydNhbwqD/ZJ46B2\nvyW+h77JMjx394f1+blQPlkG7x19InZq7Yo6CFx5FeRVKyBnfQL15lsjdm6iqKdpMP74fajI52+F\naddXkLze0kN0qxW+G26Ev0Ur+Fu0hK9FK2h1rgzbB2Us9xfAsH8frPPmQKt1EdxDxe3AR+emdugM\nPSkJcm4WXGMnio5DZ6LrMH69C8qy4JJ70w/fB79stcHT+w54e/SGmprGQp9AtLpXwf3YE7DNmQHr\nnJlwjX9adCSiqGHc/TWSBz8O89Yt0FKqoHD2PHj63xf1y9AjQat9BdxPDIFt6iRYZ06Fa8pM0ZEq\nlaf/vbA+Pzc4WC+C5R6Q4Jw2C9U6t4V97Agc7dwVsFojeH6i6GE4eACm/K0wb9saXGK/PR+GkydK\nv6+bTPA3aXZKkQ80clTqLDWW+wtgHzsSUlERCmfNhZ5SRXQcOpukJKgdOkHJzYbhpx+h1b1KdCIC\ngoV+99dQli2CsmwJTN9/F/yy1QrPbbeHCj3fLCQs9+NPwbLwPSS98gI8/QYg0LCR6EhEYrndsM2Z\ngaSXnoPk98PT+w44J02HfvHFopNFFfc//w3lvXeQ9Pp/4Ol3LwLNrhYdqdIE6jWA2qET5M8/g/G7\nvRHd6jDQyIGihx+F9YV5sM5/Bu4RYyJ2biJRpBPHYdq+LVTkt22F8bQdfvz1G0BNyyheWt8S/quv\njfgFKpb7cjKvWgHl0+XwtWkb8S1IqPzU9O7B+3fzslH093+KjpO4dB3GPbtDhf67vcEvW63w9Lod\n3p63QU1NZ6GnoKQkOJ+ejir39YV95FCcWLiE93VSwjKvXonkoU/CuO8nBOpcCeeMOcGfl/RXigLn\n1JmoevcdsI8cghNLs+L6Z4dnwEDIn38Gy4I34ZoY2en17sHDoHz0AawvzIPnrn7QrqoX0fMTVSqP\nB6ZdXwWLfPES+5KLUSUCF18Cb+YtoSLfvAX0qtUEBQ5huS8Prxf2UUOhGwwo5BC9mKCmZQAA5FyW\n+4jTdRi/2QNl6SIoy5fAtDe4kYWelARPz96hQs+9cukM1Myb4U1Ng7IyD/LHS6H2uE10JKKIkn7/\nHfZxI2FZtBC60Qj3Y0/ANXg4f2aeh69rGrzdb4WS9TGUjz6A9867REeqNN7ut0KrUQOW99+Ba9S4\niG4Dq9uT4Zo4BSkPPwD7mOE4+c7CiJ2bKKwCARgLvoF5e36oyO/eBcnvLz1ES6kCtWOX0qX1/hYt\noV16mcDQZ8dyXw5JLz8P0w/fw/3QwwhcfY3oOFQG2qWXwXdtc5jXr4NUeBJ6coroSHHP+M2e0D30\n3xYACBZ676294O3VG95uGXxzSucnSXBOmQn58zawjxuFo13T+LqhxKBpsLy7ALZJY2E4fhy+lq1Q\nOHs+33eUg/PpaZBXr4BtwhioGd3j9+9+RYHnrntgfXE+lE+XR3yHEe9td0Bd8CaUvBzIOVlQM7pH\n9PxE5abrMOz7OVTkt22F+asdkNyu0CGKAv91LeBr0bL4XvlWCNSrHzOzTVjuy8jwy37Ynp0FrWYt\nuIePFh2HykFNy4D5q+0wr1kNtUcv0XHikrHgm1ChL/gGAKBbLPDe0jNU6O12wSkp1mj16sP96OOw\nPTsbtrmzg1s+EcUx47cFsA8ZBHnjemj2ZBROmw3PwAcBo1F0tJii1bkS7kGDYZsxBdZZ0+GaNFV0\npErjGXAfrC/ODw7Wi/T2oZIE59RZqNa1Heyjh+Nox84cgEtRRTp8GObtoXvkzdvzYfjjj9Lv6wYD\nAo7Gp+4n37gpIMsCU1cMy30Z2cePhuR2o3D6nPjeXiUOqRndYZszA0puFst9GBm/LQgV+m/2ACgu\n9Df3CBb6tEwWeqow96AhsCx8H0kvzofn7n4I1I/c0CiiiPF4YJ07G9bnnoXk88F7ay84p8yI2mWf\nscD96CBY3n8XSa++FBzMGadbBQbqN4TargPkdWth/OE7BOo1iOz5GzdB0UOPwPry87A+P5e7SJE4\nTifMX20PFfltW2Hcv++UQwJ1roSnfafQfvLXXBd371VZ7svA/NlqKMuXwNf6Bnj79BUdh8rJf21z\nBC66GPLKXCAQ4BWQCjDu/TZU6PfsBhBcvuTtfiu8vXpDTc/kvuQUXlYrnJOmocoD/WEfNQwn3lvE\neScUV8yffwb70Cdg+uF7BC6vDef0OVzeHA4WC5xTZqDKPX2Cw/UWfRy3Pzs8AwZC/uJzWP73Nlzj\nJkX8/O6hI6AsWgjrc8/C06cvtCvrRjwDJRhVhWnP16H95LdthfHbAkiaVnqIVqMGvN3SQ0W+eSvo\nNWsKDB0ZLPfno6qwjxwC3WCAc8acmLnfgv7EYICanomk/70FU/6X8F/fRnSimGL8bm+w0C9dDNOe\nrwEUF/rMW0KFPl7vZ6SooN7SA2qnLpBXr4T86cdQb+khOhJRhUl//AH7hNGwvP8udIMB7of/Bffw\n0fyANIzUtEx40zODu+Ys+Sjyy9YjxHtzD2jVq8Py3v/gGjEm4kuK9eQUuCZMRsq//g772BE4+fZ7\nET0/xTlNg/GH72HK/zI4vX57Pky7dkLyeksP0a02+Nq0PWU/ee2KOnH7gd65sNyfR9IrL8L03V4U\n3f8Q/NdcJzoOXSA1LVju5bwclvsyMH6/F8qyJcFCv3sXAECXZXgzb4a3Z+/4HlBE0UeS4Jw2G9U6\n3Qj72BE42iWV2yZS7NJ1KO+/C/uE0TAcPQrftc3hnDMP/utaiE4Wl5yTZ0D+bDVs40dDTcuIzw9P\nLBZ4+vSD9eXnIWd/ArVn74hH8N7RJzhcL/tTyCtyoHbLiHgGig+GA7/BlL81tJ/89nwYCk+Wfl83\nmeBvdg38zVvC1zJ4r3ygkYMrc4ux3J+D4bdfYZszA1qNGnCNHCs6DlWA2rEzdEWBkpMF96hxouNE\nJeMP34UK/dc7ARQX+ozuoUKfUkVwSkpUgQYNUfTIY7A+9yys8+fAPYI/kyn2GL/fC/vQJyGvWwvd\naoNz0lQUPfQIYOLbscqi1b0K7seegG3ODFjnzIRr/NOiI1UKz4CBsL78PJLeflNIuS/9EDa1Peyj\nhuFo+06AxRL5HBRTpOPHYNq+LVTkt22F8dDBU47xN2gINaN7aZH3X30tX1vnwL9NzsE2YTQktwvO\nKTOgV60mOg5VhM0GtX1HKCvzYNi/L7hUh2D44Xsoy5dAWbYE5p07AAC62Qxvemaw0GfezEJPUcP1\n5FAoH30A6/Pz4OnTD1q9+qIjEZWNqgY/mJo7G5LXC29GdzinzYZW+wrRyRKC+/GnYFn4HpJeeQGe\nvv2DV/niTKBhI6ht20FeuxqGH3+AdlW9yGdo2gxFD/4D1v+8BOuL8+F+aljEM1AUKyqCaedXwen1\nJfvJ//D9KYcELr0M3u63Bot8i1bwX9ecg8zLieX+LMzr1sKyZBF8rVrD07e/6DgUBmp6dygr8yDn\nZsPz4D9ExxHG8OMPoUL/1XYAxYU+LSNU6PmDlKKR3Q7XxClI+ftA2McMx8l3Fibk/XQUW0wbNyB5\nyOMwfVuAwMWXwDl1FtRbe/K1G0lJSXA+PR1V7usL+8ihOPHh0rj87+8ZMBDyhi+Q9M7bcI2ZICSD\ne9goWBZ/BOu8OfD87W5eTElUfj+MBd+E9pPfng/Tnq8h+f2lh2hVqkLt1CW4DV3xvfLaJZcKDB0f\nWO7PxOcLDtErXmLEIXrxQU3LAIYDSl7ilXvDTz8Gl9wvXwLzjm0Agvcsebulhwo9V6dQDPD27A31\n7TegrMiFnJMFNfNm0ZGIzkg6fgwY9RSqvfYadElC0QN/h2vUOK6GEkTNvBne1LTgh/zLl4hZul7J\nvLf2gjZqKCzvLoBr2Cghe3XrKVXgHDcJKf9+BPaxI3HyzXcinoEiTNdh+Pmn0qX15m1bYdq5A5Lb\nHTpEUYL3yLdoGSzyLVshULceO1YlYLk/g6RXX4ap4BsU3fsA/M1bio5DYaLVvgL+ZtfAvG4t4HTG\n3b6WpzP8/FNxoV8M8/Y/FfrUtFChr1ZdcEqiciq5r7NzW9jHDMfRTl2ApCTRqYhCdB3K4g9hHzMC\nOHIY/qZXo3D2XPhb3yA6WWKTJDinzIT8eRvYx43C0a5p8fc+wGKB565+sL7yYvDDzx69hMTw9ukL\n34I3oXy6HOZVK+Dr2k1IDqoc0u+/B5fWlxT57fkwHD1a+n3dYEDA0SR0j3zLVvA3bgqYzQJTJw6W\n+9MYDh6AddY0aNWqwTWKA5vijTc9A7avd0JeuwbqzbeKjhN2hn0/hwr9tnwAwUKvdu0Gb8/e8Ha/\nhYWeYl6gkQNF//gXrC/Oh/W5Z+EeNkp0JCIAwVVSycOfgrx6JfSkJGDGDBzr/xDf1EYJrV59uB99\nHLZnZ8M2d7awpeuVydN/IKyvvIikBW8IK/eQJBROn4Nq3TrAPnoYjq3ZACiKmCxUIZKzEKYd24PT\n67cXD7z7Zf8pxwTq1IWnY2f4mwevyPuuuQ6w2QQlJpb709gmjIHB5UThxHnQq9cQHYfCTE3vDtuz\nsyHnZsVNuTfs3xcq9PlbAQC60Qi1S2qo0PO1THHGPWQ4lEULYX3uWXj69IVW9yrRkSiR+XxIeul5\n2OZMh1RUBLVrNxTOeAY1Wl8DHC4UnY7+xD1oCCwL30fSS8/Bc/c9CDRoKDpSWAUcjeFr0xbymlUw\n/PwTtCvrislx9TXw3P8Qkl7/D5JeeQFFjz8lJAeVg6rCtHvXqUX+2wJIul56iFazJrxpGaH95Ju3\ngl6D7zGjCcv9n5jXr4Nl0UL4mreA5557RcehSuBv0QpazZpQ8nLg1LSYvdfH8Mt+KMuXQlm2COat\nXwIoLvSduxYX+lv5w5bimm5PhmvCZKQ88iDsY0fg5IL3RUeiBGX6cjOSBw+Cac/X0GrWQuHcF+C9\n7Y64HNgWF6xWOCdNQ5UH+sM+aihOvL847n6vigYMhHnTBljeeVvo9r+uEWOgLF0E2zMz4b2jD7TL\nawvLQqfRNBi//w6m/C9Ll9abdu2EpKqhQ2x2+Nq2g79Fq9Il9lrtK+Luz0u8Ybkv8echetPnAEaj\n6ERUGQwGqN0yYHnvHZi258PfsrXoRGVm+PWX4JT7pYth3roFQHGh79gF3l694b25Bws9JRRv7zuD\nw/VysiDnZUNNyxQdiRKIdPIEbJMnwPLWfyHpOooGDIRr7EQOJ40B6i09oHbuCnnNKsifLA/uXhBH\nvD1ugzZ6OCzvLoB76Ehht4XoVarCOXYSUgb9C7bxo1H42ltCciQ8XYfht19PuUfetH0bDIUnQ4eY\nzfA3uzo49K5la/ibt0SgYSP2oRjEcl8s6b//gWnPbhT1vy+mCh+Vnze9OyzvvQM5Nzvqf68Nv/0a\nKvRfbgYQHFSidugcKvQ1awpOSSRIyXC9ru1gHzUMRzt0BiwW0ako3uk65I+Xwj5qGIyHDsLvaIzC\nWfPgv7Gt6GRUVpIE57RZqNbxRtjHjcTRrt0Aq1V0qvBJSoKnz92wvvoy5NxsqLf0EBbFe1c/+N5+\nA5Zli+H5bCB8nboIy5IopGNHYdq+LVTk87fC+PuhU47xN2wENfPm0NC7Ztfw7884wXIPQDp0CNaZ\n06BVrQrX6Ami41Al83XuAl2WIedmwz1ijOg4f2E48Fuo0G/ZBKCk0HcKLrm/uQf0WrUEpySKDoEm\nTVH00COwvvICrC/Mg3vwcNGRKI4Z9u+DfcRgKHk50BUFrpFj4X50kJAtx6hiAvUbouif/4Z1/jOw\nzpsN90hxy9crg6f/QFhffTk4WE9guYfBAOeMOaia1gn2UUNxbPV6/nkJJ7cbpp1fFU+vD06wN/34\nwymHBC67HN5beoa2obuuObfkjGMs9wDsk8bCUHgShTOe4bLmBKDbk+G7qT3kNatg+O1XaJddLjpS\nsNB/vDRY6DdvBFBc6Nt3DBb6W3qy0BOdhXvYSCiLP4R13hx4/nY3tDpXio5E8cbvR9KrL8M2YzIk\ntxtqh05wznoWgXoNRCejCnA9ORTKh+/D+sJ8eO/qF1e/n4EmTeG7vg3Mq1fCsO9noT8X/dc2h+e+\nB5D05utI+s9LKHpskLAsMc3vh/GbPaXD7sz5W2H8ZjekQKD0EK1KVaiduxYX+dbwt2gJ7eJLBIam\nSEv4cm/auAGWhe/Bd21zeO69X3QcihBveibkNasg5+XAc98DQjIYDh6A/PFSWJYuhmnzRki6Dl2S\noLbrECr0F10kJBtRLNGTU+Aa/zRSHv0H7GNH4uRb74qORHHEtGMb7IMHwfzVdmg1aqBw5rPw/u1u\nDpWKBzYbnJOmospD98E2ejhOvvthXP2+Fg0YiJQtm2B59224R4jd3tk1ciyUZYthmz0d3jv+Bu3S\ny4TmiXq6DsOPPwSX1pfcK79zB6SiotAhFgv8LVuXLq33tWgF7ap6cfUapvJL7HLv9yN5xGAAgHPa\nLA6NSCBqWiYwahjk3KyIlnvDoYOQS67Qb9pQWuh9bduFCv3FF0csD1G88N55F9QFb0LJ+hjmVXnw\ndU0THYlinOQshHX6ZCS99gokTYPn7nvgHD+ZK/zijNrjNqgdOkNZmQc5+1Oo3W8RHSlsvD17Qxsz\nApZ3FsA9ZCRgEve2X69WHa4xE5H81L9hmzAaha+8ISxLNJIOHQpdkd+2FdixDTWOHi39vm4wINC4\n6SlFPtC4ibBhiRS9ErrcW958Dabdu+C5+x74r28jOg5FkHZlXfgbN4H8+WeA212pg3SkQ4eCS+6X\nLYZ54/pQob/xJnh79oZ6a08umSKqqJLhet06wD5yKI6t3QQoiuhUFKPkrE9gHzkExt9+hb9+Azhn\nz4OvXQfRsagylAzX69wW9rEjcLRzVyApSXSq8LBa4f3bXUh6/T+Q83KEf3Dh6TcAlv+9Ccvij+AZ\ncD987TsKzSOKVHgSph3bT91P/tdfTj2oXj14OnUJbkPXvBX811wL2GxiAlNMSdhyL/3+O2zTp0BL\nqQLn2Emi45AAanp3WOc/A/nzz6BmdA/rc0uHDkH5ZFmw0G/4IlTo27SFt1dvqLf0hHbJpWE9J1Gi\nCzS7GkUP/B3WV1+G9aXn4H5iiOhIFGMMB36DfeRQKJ8uhy7LcA0ZAffjT3GKdJwLNHKg6OFHYX1h\nHqzzn4F7+GjRkcKmaMD9SHr9P7AseEN4uYfBAOe02aia2RX2kUNwbNUX8X/l2euFafeuU4v83m8h\n6XrpIVrNWvCmZwaLfIuW8DdviZqOuig8XCgwOMWqhC339snjYTh5AoVTZ3JQWYLypmUGy31udljK\nvfT776cWek0DAPjatIWnV2+ot/ZioSeqZO5ho2BZ/BGsz86C5867oNW+QnQkigWBACxvvArb1Kdh\ncBZCbdsOztnzgvs8U0JwDx4G5aMPYH1+Ljx9+gbvXY4DgabN4Gt1PeSVeTD8sl/4z0R/i1bw9L8P\nSQveRNJrr6Don48JzRNWmgbj3m9Ll9abtufD9PUuSKoaOsSeDF+7DqVL6/0tWkK7vDbvk6ewSchy\nb9qyCZb33oG/6dXwDHxIdBwSxN/6emjVq0POywb+9AlqeUiHD4cK/fp1oUJ/w43Bfehv7cWhMUQR\npFepCue4SUh5/J+wjx+Nk6+/LToSRTnjzq+QPHQQzPlboVWtisJnn4enb3/AYBAdjSJItyfDNXEK\nUh5+APZxI3FywfuiI4VN0b33I2XrFljeeTsqViW4Ro2H8vFSWGdNg/f2O2Pz1kRdh+HXX0LD7rbn\nw7R9GwzO0NV23WyG/+pr/lTkWyHQoCFnfFGlSrxyHwjAPiK4VLNw+hyhw0VIMKMRamo6LAvfg2nn\nDiC1bPdTSkeOFBf6JTB/sTZU6K9vA2/P2+DtcVtUbK9HlKi8ffrCt+BNKMuXwPzZavg6dREdiaKR\nywXbrGlIeuUFSIEAPHf0gXPSNK7mS2De2+4IDubMyYKclx0cvhsHSgfrvbsA7sHDhb/31WvUgGvk\nOCQPexK2CWNQ+NJrQvOUhXT0D5i2byueXr8V5m35MBz+vfT7uiQh0LAR1JIi37IV/E2v5uwXiriE\na7aWt9+AeecOeP52N/w3thUdhwTzZnSHZeF7kHOyzlnupSNHoHy6PFToi/cU9bW+IVToL68dqdhE\ndC4GAwqnz0G1tI7B+zrXbABkWXQqiiLyihzYhw+Gcf8+BK6si8KZz8LXJVV0LBJNkuCcOgvVuraD\nfTkvXEcAACAASURBVNQwHO3QOT7mLdhs8N7ZB0lvvAZ5ZV7Y5wxdCM+AgbD87y1YPvoAnnvvh69t\nO9GRQtxumL7aAfP2UJE3/vTjKYcELq8N76294GveMljkr2sOPTlFUGCikMQq90eOwDZtErTkFDjH\nPS06DUUBX+eu0E2m4NJ8TD3le9IffxQX+sUwr/v/9u47QK6y7tv4NVuyPQ0CqFQRb4ogkNARH7oo\nSEcQghQRBRUeCSWUEAghoYmCDQRMaAIigiL6ICItFOlF8EYFfAUVAklIdrObbJn3jzMLa8wMKZs9\nc2avz1/ZKbs/8btn53vKffoU+tFbJLet22vv1K9dk7R43RtvQscRR9NwzY9puOIHtH/jxLRHUhnI\nvfkmzWeeSv0dt5GvqWH+CSfR9q1TKmd1dC237vU3oP3LX6XxR9+j8fvfTY50V4D2sUfS8JOrkoX1\nyqDcU11N69SLGfHZXWg+bRyzf/9gOmcUdHVR/dKL79+G7qknqY4vvfeZD6Bn+HAW7rjze6fWd266\nubctVtkaXOV+/Hiq5syhddIUfykFQH7oMDq32Z4hD94H//wnuXkLqbvrzqTQP3h/n0I/hgV7FQr9\nGmumO7SkJdJ22pnU/fIXNF1yAQv2P9DLZQaznh7qr5tG06RkMd3OMVsy7+Lv0r3hRmlPpjI0/+TT\nqLvtZzR+9xI6DjyYnjXXSnuk5db9iY3p3Hw0Q+65m6o3Xi+Lsw27xmxJ+xfH0nDjdTRccyXtXzlu\nxf7AfJ6qV1957xr52qeepOaF58i1t7//koYGukZv8d5id52bjaZn7XVc8E6ZMbjK/dVX07XBhrQf\nfWzak6iMLNxt96Tc77ILK7388vuFfvPR7xf6CvjDLg02+eEjaDvzHFpOPJ6miWcw78pp/f4zau+9\nB2a+QX1rR79/7xWpc5vtB02xrX7pRVrGnUDt44/RM3QY8y68lI7Dj3TBPBWVbxlK28TzGHrcMTSf\nNZ65029Me6R+0XHYEbQ89WRy7f3J49MeB4C2M8+h7te/ovGC8+nYe/9+P/hW9eor1N98Q1Lkn3mK\nqjlz3nsuX11N9/ob0rn56PcWvetef4PU1ySQlkcuv4yrhGdSLpefc8vtdP7PTmlPojJS9dqrjNxm\nc3Ld3XRuuhkLPr9fUujXWjvt0VQmRo1qYab3m82mnh6Gf24Xap98gjm33Unn9jv027fOzZvLSuut\n+d6imlnS+cnNmPO7+9MeY8Vqb6fx0oto/N53yHV10bH3frSdN3VAV+Z225Fh+TzD9t6DIY8+zJyb\nfk7nTrv227fOzZvLyuuuDnvtxcyrb+i37/uBWltZaeOPkx82jFlPvrDUq7aP3GxDqK5h1hPP9etY\n9VdfScv4cXQcdAjzvndFv37voUceRt2vfwlA1zofpWuzzQun1o+ma+NNoLGxX39ef3HbocVauJBR\nq68M+XzRU0kG3a6p7o+um/YIKjM9a6/D7LvvZ+TaH2JOi6skSxWlqorWKRczfPcdk8X17p0BtbX9\n870XLEyK/dZb8+4xK/h00n7UcuLXyc1vS3uMFar2/j/QcvKJVL/2Kt1rrEnrBZewcJfd0x5LWZLL\n0TrlYkbs8imax5/M7Acey/7K583NLNj/IBquvYYh9/6ubO4G0HHE0dTfcC31t/yU9rFH0rXV1v34\nzZNT7t959s/emliDwqAr99LidG+8CYxqAfeSShWna9PN6Rh7JA3XXkPDj39E+3Hf6N8fsPrqLNxr\nn/79nivSqSelPcEKk5s5k+azT6f+1pvJV1cz/2vfoO2U06GpKe3RlEHdG32C9qOOofHHP6Lxh5cz\n/8RxaY+03DoOP4KGa6+h/rppZVPuk8X1LmHEnrvSctpJzL7ngX6/F3zPsOH9+v2kcuUFZ5Kkitd2\n+ln0jBhB40VTqPr3v9IeR/0tn6f+xusYuf0Y6m+9mc5NN2PO3ffRds5ki72Wy/xTTqdn5VE0XnoR\nVa//I+1xllvXJpvS+cnNGHL3b6n61z/THuc9XVtuRccXvkjNn56nftrVaY8jZZblXpJU8fIjV6Lt\njIlUtbXSNPHMtMdRP6r+y8sM2+eztJx4PCzspHXyBcz5zb10bfzJtEdTBcgPG07rhHPJtbfTPOH0\ntMfpFx1jjyDX00P9jdelPcp/aD3rXHqGDqNp6nnk3n477XGkTLLcS5IGhY5DD6dz082ov+1n1D78\nUNrjaHl1dNB44fmM2HFbhjwygwV77MnsGY/TfszX+v2UXg1uCw46hM4ttqLuzjuove/etMdZbgv2\nO4B8YxP1N1wLfe7nnrb8Kqsw/9TTqXp3Dk3nnZ32OFImWe4lSYND4brOfC5H8/hx0NmZ9kRaRrUz\nHmTEjtvSdPFUelZamXen3cjc6TfS8+GPpD2aKlFVFfOmXkK+qorm00+GhQvTnmi55Jtb6Nj/QKpf\n/wdD7vt92uP8h/Yjj6Frw0/QcON11Dzxx7THkTLHci9JGjS6Nh9Dx6GHU/PSizRcc2Xa42gp5Wa9\nQ/MJxzF8389R/crfmH/MV5k943EWfnbPtEdTheveeBM6jjiamr/+hYYffT/tcZZbx9gjAKi/dlqq\nc/yXmhpap14MQPNp48rqzAIpCyz3kqRBpe2MifQMH07jhVPIvflm2uNoSeTz1P3sJkZuN4aGn15P\n5yc2Yc5v76Vt8oXkm1vSnk6DRNtpZ9Kz8so0fftCqv75RtrjLJeuT25G58afZMjdvym7RUY7t96W\njgO+QO1zz1B/3bS0x5EyxXIvSRpU8iutRNv4CVTNm0vzuWelPY4+QNUrf2PYgfsw9PivkGtvp3Xi\nZObcfR9dm41OezQNMvnhI2g78xxy89toOvuMtMdZPrlcsrBedzf1P70+7Wn+S9vZk+hpbqHp/HPI\nvfNO2uNImWG5lyQNOh2HH0nnJptS/7ObqHn0kbTH0eIsXEjjpRcx8tNbM+SBP7Bg192Z9eAfaT/u\nG1BTk/Z0GqQ6Dj6UztFjqL/jNmofuC/tcZbLgv0PJN/YSP3106GnJ+1x/kPPqqsx/5TxVM2ZQ9P5\n56Q9jpQZlntJ0uBTXU3rlIsAaDntJOjqSnkg9VXz2KOM2OVTNE2ZRM+w4bx71XTmXn8LPWusmfZo\nGuyqqt5fmDPji+vlW4bSse8BVP/j/5XlXQDajz6WrvU3oP766dQ8/WTa40iZYLmXJA1KXVtsRfsh\nh1Hz4gvUT7sq7XEE5ObMpvmkExix125Uxz/TfsTRzH74CRZ+fl/I5dIeTwKS69U7Dj+KmpcjDT/+\nUdrjLJfehfUayvHa9tpaWqdeQi6fp/m0k8ru7AKpHFnuJUmDVtuZ59AzbDhNUyeTe+uttMcZvPJ5\n6m7/OSO324KG635C1wYbMufOu2m98FLyQ4elPZ30X9pOP4uekSNpvHhq2S1ItzS6NhtN10YbM+T/\n7irLBUY7t92ejv0OoPbpp6i/4dq0x5HKnuVekjRo5UeNou20M6ia+y7N552d9jiDUtXfX2PYIfsz\n9CtHkps3l9YzJzL7ngfp2mKrtEeTisqPGEnbGROpamulaWKGF9fL5WgfewS5ri7qb74h7WkWq23i\nZHqammmaPJHc7FlpjyOVNcu9JGlQ6/jS0XRttDH1N91AzeOPpT3O4NHZScPl32HkDlsx5N57WPjp\nHZl1/6O0f/NbUFub9nTSB+o49HA6N9uc+ttupXbGg2mPs8wWHHAQ+YaG5NT8Mjz1vWe1DzF/3GlU\nzZpF0/mT0h5HKmuWe0nS4FZTw7yplwDQfNo46O5OeaDKV/PUE4zY9dM0T5pAvqmJuT+8indvuZ2e\ndT6a9mjSkuu7uN74cdDZmfZEyyQ/dBgd++xP9d9fo/bB+9MeZ7Hav/I1uj4eqL/2GmqefTrtcaSy\nZbmXJA16XVttTcdBh1D7/LPUT78m7XEqVm7eXJrHj2P4HjtT8+ILtB/2JWbNeIIF+x/kgnnKpK7N\nRtNx2Jeo+fNLNFx9RdrjLLPehfXqy3FhPUgW15tysYvrSR/Aci9JEtA6YRI9LUNpmjKJ3Ntvpz1O\nZcnnGXLnLxmx3RY0XH0l3R9bjzl3/IbWb19OfsTItKeTlkvb6WfTM2IEjRdOoerNf6c9zjLpGr0F\nXRtsRN1dvyrbxUU7P/VpOvbej9onn6D+pvJcH0BKm+VekiQgv8oqzD/1dKrenUPT5Ilpj1Mxqt54\nnaFfOoRhRx1G1ax3aDv1DGbfO4PObbZLezSpX+RXWom28ROoap1H0zlnpT3OssnlaD+8d2G9G9Oe\npqi2cyaTb2yiadIEcnNmpz2OVHYs95IkFbQf9RW6NtiIhhuupeapJ9IeJ9u6u2m44vuM3G4L6n57\nFwu334HZ9z/C/JNOhbq6tKeT+lXH2CPo3GRT6m+9mdpHH057nGWy4IAvkK+vp/76aWV72nvPhz9C\n27dOoeqdd2iael7a40hlx3IvSVKvmhpap14MkFzX6eJ6y6TmuWcY/pmdaD5rPPm6Icy97Ie8+/Nf\n0b3uemmPJq0Y1dV9th3joKsr5YGWXn7YcBbsvR81r75S1qv/t3/1eLrW/Rj1066m+vnn0h5HKiuW\ne0mS+ujcZjs69j+I2meepv6Ga9MeJ1taW2k6azzDd/sfap99mo6DDmHWjCdZcPChLpinitc1Zkva\nvziWmhdfoH7aVWmPs0zaxx4JQP11P0l5khKGDKH1/IvI9fTQ4uJ60n+w3EuStIi2iefR09xC0+SJ\n5Ga9k/Y4mTDk/37DyE9tSeMV36d7rbWZc+svmfe9K8ivvHLao0kDpu3Mc+gZNpymqZPLdmG6Urq2\n2JKu9Teg7te/KuuFRTt33JkFn/s8tY8/Rt3Pbkp7HKlsWO4lSVpEz6qrMf/k8VTNnk3T+ZPSHqes\nVf37Xww9aizDxn6BqrfepO1bJzP7/kfp3OF/0h5NGnD5lVem7bQzqZr7Ls3nnZ32OEsvl6Nj7BHk\nOjvLemE9gNZJU8g3NNB87gRyc99NexypLFjuJUlajPYvH0tXWJ/6635CzTNPpT1O+enupv7qKxmx\n7Rjq7ryDzi23Zva9M5h/2llQX5/2dFJqOr50FF0bbUz9TTdQ8/hjaY+z1Dp6F9a77ieQz6c9TlE9\nq6/B/BPHUTXzLRovPD/tcaSyYLmXJGlxamtpnXIxuXye5vHjvK6zj+o/vcDwPXelZfw4qK5m3iWX\nMeeXv6U7rJ/2aFL6amqYN/USoLC4XsYW5syPGMmCvfah5pW/UfvwQ2mPU9L8475J1zofpeHqK6l+\n8U9pjyOlznIvSVIRndvvQMc++1H75BPU//T6tMdJ3/z5NE06mxG77kDtk0/Qsd8BzJrxBB1jj4Aq\nP1JIvbq22pqOgw6h9vlnqZ9+TdrjLLVMLKwHUFdH2/kXkuvuTu5wUsZnGkgDwb/EkiSV0DZxMvnG\nJprOO5vc7Flpj5Oa2nvvYeQOW9N4+aX0fHh15tz0c+b96Bryq6yS9mhSWWqdMImelqE0TZlU1ovT\nLU7XVlvT9fFA3Z2/JPdOeS8qunDn3Vjwmc8x5NGHqfv5LWmPI6XKci9JUgk9H/4IbSedStU779A0\n9by0xxlwubfeouWrRzH84P2oeuMfzP/G/zLrgUfp3GnXtEeTylp+lVWYf+rpVL07h6bJE9MeZ+n0\nLqy3cCH1t/w07Wk+UOt5U8nX19M08Uxy8+amPY6UGsu9JEkfoP3Y4+ha7+PUT7+GmuefTXucgdHT\nQ/110xi53Rjqb7uVztFjmH3Pg7SddQ40NqY9nZQJ7Ud9ha4NNqLhhmupefLxtMdZKh0HHky+rq7s\nF9YD6FlzLeZ/81tUv/UmjRdNTXscKTWWe0mSPsiQIbSefxG5nh6aTz2p4hfXq45/Zvjee9By0jeh\np4d5Uy9hzp2/o3ujT6Q9mpQtNTW0Tr0YyN7ievmRK7Fgz72p+etfqH304bTH+UDzv34i3WutTcOP\nf0j1n19KexwpFZZ7SZKWQOend2TBXvtQ+8QfqcvAaarLpKODxqmTGLHTdtQ+9ggL9tyb2TMep+Oo\nY6C6Ou3ppEzq3GY7OvY/iNpnn6b++ulpj7NUOg4vLKx3bZkvrAdQX0/r5AuSxfXGjyv7sw2kFcFy\nL0nSEmo993zyjY00n3sWVXPnpD1Ov6p94D5GfHprmr59ET2rrMq7193M3Guuo2e1D6U9mpR5bRPP\no6e5habzzyE3KzsLc3ZuvS1dH1uPujvvIDdvXtrjfKCFu+3Bgt0+w5AZD1J3+8/THkcacJkv9yGE\n6hDCNSGEh0IID4YQNkp7JklSZer5yOq0/e/JVL39No0XTE57nH6Re/ttWr5+LMMP+DzVf3+N+cce\nz6wH/8jC3fdIezSpYvSsuhrzTx5P1ezZNJ1/TtrjLLlcjo6xR5JbsICque+mPc0SaT3vAvJ1dTSd\nfQZVra1pjyMNqMyXe2BPoCfGuD1wJlAZn7YkSWWp/atfp+uj61L/i4wfFcrnqbvpBkZuP4b6W35K\n5yc3Y87d99E2aQo0N6c9nVRx2r98LF3rb5C5bUfHQYeQHzIk7TGWWM/a6zD/6ydS/e9/UfvYI2mP\nIw2ozJf7GOMdwLGFL9cGZqc3jSSp4tXV0Xr+RWlPsVxy777LsP33Yug3v0auYwGtk6Yw5ze/p2uT\nTdMeTapctbW0Trk47SmWWn6llViw5+fTHmOpzP/mt+hec620x5AGXObLPUCMsTuEMA24DLgx5XEk\nSRWuc6ddWPDZvdIeY5lVv/UmQx56gAWf+SyzZjxO+7HHQ01N2mNJFa9zu0/Rse/+aY+x1DrGHpn2\nCEunoYHWSd4ST4NPLl9BK0mGEFYFHgM2iDG2/9cLcrk8r74Ka6890KNJkirN3/8Oo0fDl78MUzP0\nIXKrreD11+Hyy2HffSGXS3siaXB54w3YbDM49FC49NK0p1ky+TxsvTUMGwZ33532NEsmn4cDD4RH\nH022197xQ1nX0wNrrQX/+EfRP9yZL/chhLHA6jHGKSGEocAzJOV+wX+9OJfLv/PE8/R4mo4WY9So\nFmbOLP+VYDXwzIaKam9n1BqjmPl2hhZt6uhIjtJ7pH6Fc9uhorK47Vi4MNluVGXoxN+eHujshLq6\ntCdZKm47VFR7O6PWXKVoua+Ev+y3AtNCCPcDtcAJiy32kiT1t4aG7B35rq9PewJJWdx2ZGhRvfdU\nVWWu2EslNTSUfDrz5b5w+v0X0p5DkiRJkqS0ZOi8GkmSJEmStDiWe0mSJEmSMs5yL0mSJElSxlnu\nJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmS\nMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuS\nJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc\n5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmS\nJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9\nJEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElS\nxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mS\nJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz\n3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmS\nJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKuJq0B1heIYRa4Bpg\nLaAOOC/G+Kt0p5IkSZIkaeBUwpH7Q4GZMcYdgM8A30t5HkmSJEmSBlTmj9wDPwNuLfy7CuhKcRZJ\nkiRJkgZc5st9jLENIITQQlL0zyj5hlxuAKaSJEmSJGng5PL5fNozLLcQwhrAbcD3Y4zTir7w+OPz\nXH45VFXC1QiSJEmSpEGm6NHqzJf7EMKqwH3AcTHGP3zAy/MzZ85b8UMpk0aNasF8aHHMhkoxHyrG\nbKgU86FizIZKGTWqpWi5z/xp+cDpwDBgQghhQuGxPWKMHSnOJEmSJEnSgMl8uY8xngCckPYckiRJ\nkiSlxYvPJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGW\ne0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmS\npIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeS\nJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZ\nZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmS\nJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5y\nL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmS\nlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnjLPeSJEmSJGWc5V6S\nJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmSJEkZZ7mXJEmSJCnj\nLPeSJEmSJGWc5V6SJEmSpIyz3EuSJEmSlHGWe0mSJEmSMs5yL0mSJElSxlnuJUmSJEnKOMu9JEmS\nJEkZZ7mXJEmSJCnjKqrchxC2CiH8Ie05JEmSJEkaSDVpD9BfQginAIcBrWnPIkmSJEnSQKqkI/d/\nBfYDcmkPIkmSJEnSQKqYch9jvA3oSnsOSZIkSZIGWsWclr+kRo1qSXsElTHzoWLMhkoxHyrGbKgU\n86FizIaWxaAr9zNnzkt7BJWpUaNazIcWy2yoFPOhYsyGSjEfKsZsqJRSO34q5rT8PvJpDyBJkiRJ\n0kCqqCP3McbXgG3TnkOSJEmSpIFUiUfuJUmSJEkaVCz3kiRJkiRlnOVekiRJkqSMs9xLkiRJkpRx\nlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJGWe5lyRJkiQp4yz3kiRJkiRlnOVekiRJ\nkqSMs9xLkiRJkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJGWe5lyRJkiQp4yz3\nkiRJkiRlnOVekiRJkqSMs9xLkiRJkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJ\nGWe5lyRJkiQp4yz3kiRJkiRlnOVekiRJkqSMs9xLkiRJkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJ\nkiRJyjjLvSRJkiRJGWe5lyRJkiQp4yz3kiRJkiRlnOVekiRJkqSMs9xLkiRJkpRxlntJkiRJkjLO\nci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJGWe5lyRJkiQp4yz3kiRJkiRlnOVekiRJkqSMs9xLkiRJ\nkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJGWe5lyRJkiQp4yz3kiRJkiRlnOVe\nkiRJkqSMs9xLkiRJkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJkiRJGWe5lyRJkiQp\n4yz3kiRJkiRlnOVekiRJkqSMs9xLkiRJkpRxlntJkiRJkjLOci9JkiRJUsZZ7iVJkiRJyjjLvSRJ\nkiRJGWe5lyRJkiQp4yz3kiRJkiRlnOVekiRJkqSMs9xLkiRJkpRxNWkPsLxCCFXAD4BNgAXAl2OM\nf0t3KkmSJEmSBk4lHLnfBxgSY9wWOA24JOV5JEmSJEkaUJVQ7rcDfgsQY3wMGJPuOJIkSZIkDaxK\nKPdDgbl9vu4unKovSZIkSdKgkPlr7kmKfUufr6tijD1FXpsbNaqlyFMSmA8VYzZUivlQMWZDpZgP\nFWM2tCwq4Qj3DOCzACGErYHn0h1HkiRJkqSBVQlH7n8B7BpCmFH4+sg0h5EkSZIkaaDl8vl82jNI\nkiRJkqTlUAmn5UuSJEmSNKhZ7iVJkiRJyjjLvSRJkiRJGVex5T6EsFraM6g8mQ2VYj5UjNlQKeZD\nxZgNlWI+tDghhM+GEHZf2vdVXLkPIWweQrgJ2DeEUAl3A1A/MRsqxXyoGLOhUsyHijEbKsV8aHFC\nCNuEEG4GDgL+urTvr6jV8kMIFwK7A0fFGJ9Mex6VD7OhUsyHijEbKsV8qBizoVLMh4oJIfwOeDjG\neHYIYUfgxRjjm0v6/krbS/Qy0AGsGUI4HZgBPBJjfCTdsVQGzIZKMR8qxmyoFPOhYsyGSjEfek8I\nYeMY4/MhhCrgJ8DnQgh/AF4DmkIIj8YYv70k3yuzp+WHEHIhhNVCCNP7PPw6MAbYG5gKdAE/TGM+\npcdsqBTzoWLMhkoxHyrGbKgU86FSQgjbAb8JIQyJMfYArcBC4IwY45HAZOArIYQRS/L9MlvuY4x5\nYG1gbAjhsMLDfwHuASbHGB+PMV4GvBpC2DmlMZUCs6FSzIeKMRsqxXyoGLOhUsyHigkhNAOHAC3A\nBYWHHwKuBB4HiDE+S5KV+iX5npkq9yGEmhBCbeHfKwH7At8GpoQQ6mKMfwOuAv5VeM0IYDbwJDA7\nlgAADphJREFUREoja4CYDZViPlSM2VAp5kPFmA2VYj60OCGEphDCgSGEjQoPNQDPkez8OSiEsH6M\ncRbwEvDFEML2IYTzgFWAmUvyMzJT7kMI/wvcBEwOIXw4xvgO8ECMcRzwAHBp4aW1wI9DCNOA24H/\nB8xLYWQNELOhUsyHijEbKsV8qBizoVLMhxYnhLAtyc6bHYALQwj7kOzQuTvGOJtkZ89lhZd3AB8G\nvg7kgC/FGLuW5OdkYrX8EMLWwOkk/wOPKzz8yxjjw4XnVwaeBnaLMb4UQvgQsB7w7xjjy2nMrIFh\nNlSK+VAxZkOlmA8VYzZUivlQMSGE44BZMcabCsV+K+CZGOPNfV7zJ+Dc3scK1+EvXJqfU7blPoSw\nFpAnWXDia8A6McZxIYSPAPuRnJ5wYYxxXuH15wJ7xhg3T2tmDQyzoVLMh4oxGyrFfKgYs6FSzIcW\nJ4SwDjCB5Gj9XSRZGB1j/GLhWvsDSHbsfDfG+FbhPYcDX4wxfmZZf27ZnZYfQqgKyS0hbif5D/JD\n4GfAHiGElWKMbwDPkNzGb+3e98UYJwDfH/iJNVDMhkoxHyrGbKgU86FizIZKMR8qJoSwK3A9yaJ4\nXSS5uApYO4SweYyxFYgkO35qQgg5gBjjtctT7KEMyz2wJbAt8KkY45eBTYChJHs8JgDEGB8ENqQw\nfwihpvD41WkMrAFjNlSK+VAxZkOlmA8VYzZUivnQf+gt6STXy98RY/wBcDXwZ5KSfzMwCSDG+Ejh\ndXWFOyr0i5r++kb9aEPg10B74XSWVuBN4BLggRDCr4B/k8ze+wuyRAsMKPPMhkoxHyrGbKgU86H/\nEELIFT5smw2VYj70nj7bDYA24FeFf48BVgYWxhi/G0L4QgjhApKdQxGY1Z9zpFruQ3Lbh9YYY2ef\nh38FzIkxdocQWoA3C9eozAshnAJ8BtgeuCTG+OTAT62BEEJYDfgY8Mc+C0mYDQHJrURijG2Ff/du\nTM2HCCEMATpjjPkQQlWMsQezoYIQwnCSD1jzQwg1hQ/a5kOEEFYlud/0jb3Xv2I2VBBCaATa/dui\nvgp95SvA74CXgXcAYoy39nnZwcBdffruTsBo4JEY4+39PVNq5T6EcCawO/B4COGhGONtADHGvvfw\nOwz4beH1xwLXrYj/CCovIYSzSDaIl8YYF/aWN7MheG8hmo1DCM+SLEIyG9x2CEIInwSOBL4LvFr4\n8GU2BEBhVervAQ+THFnrBvMhCCGcABwPdMcYv+PnDvUVQjgH2AB4PoRwRe/OH/MxuIUQ9gPOBO4H\nvgi8EkL4Tt9T7Aun6Q8BbilsZ/YkWTBvxoqaK5Vr7kMIBwHrAF8g2csxOoTQ0uc6BUIItSR7u9YM\nIdxOsoejuu9rVFlCCDWF4G8L7Aw8HEJYqc/zvdcrmY1BqrAhXQ/4JkkG9i88Xt3nNeZjkOnz/+3W\nJJnYMoTQsJjXmY1BqM//v7XA6sB2IYRPFI7Aue0YxEIIa4cQHgfWIFm5ekYIoXHR61/NxuAVkluW\nrQecCKwKHB9C2LTwnJ9LB6nC2gm7kdx//n+Bp4Chi/5dAYYDR5Cc5bEOcPgiO4X63YAduQ8hrBFj\n/Efhy0NJ9mj9M4TwKrBv7+0h+hgFrEvyC3J+jPGPAzWrBlZvNmKMXSGEOcBjJKuIrg7MBJ4JIXw7\nxthT2JCajUFkkW3HDiSnMf0jhHAPyRH8hhhje+G15mMQCSGsD8wh2U50Ax8FfgFsA7wEPNfntTnM\nxqCymHx8nOSo/WPAF0MIF/We+WM+BpcQwgbAOzHG10IIB8cY/xZC2BZoKlyy8d61s2Zj8AkhrAv8\nvXDZzg7AQ4XOchmwD8lq+M/6uXRwKezUORy4Jcb4aAjhbaCu8HQPyeXExBi7+7xtI+D/SO5d//RA\nzDkg97kvXOP2E5JCf1sIYT3gnzHGthDCvsBWMcbTFnlPHbBzjPGuFT6gUtMnG9NjjLeHEDYBLgd+\nGmP8UQjhU8BBwG96s2A2Bo8++bg2xviLEMIuwLdIVqP9MMmKtENIrmW6vfAe81HhQghNJCsR7ww8\nS3Id5NdDCBvFGP8UQvg+8CJwQ4xxTu8HdbMxOCySj2dIrrE/LiS3JuoGFgLXAC+QHFGZX9i5bD4q\n3CLZeI5k23F84bnVgOnA0THG1xd5n9kYBArX1U8EdgQeAH4PzAYuizFuUXjNZ4BPA1fEGF8rPGY+\nKlwI4WCSS3fuIFkcb0SM8djCc1XAdSTrdfw6hFC7yHpyA2qFnpbf53SUA0j2XOwVQmiOMf4F6AjJ\nwkcHkOzRIISwXe+plDHGBf6SVK7FZGPvEEJLjPE5kvuE9q4w+RDJ3rBZhfdVm43Kt5h8fD6EMDTG\neA/JxvWvMcaPxhi/DrwGVBfeZz4Gh92BNWOMY0gu0dgihDAqxvinwvM3AZuRZIc+CyCZjcGhbz5O\nADYPITQDuxS+Ppuk2M+NMc4tFHvzMTj0zcY3SC4LXa3wXCNJLv5jNfPCzkGzMTjsQnL0dTvgCZKd\nQI8DL4cQeg9CPgp8kmQnIW47Klufz6P1wM9ijBcDp5P8XRlbeG4NYF6h2B8PnBKSBRZTsULLfZ9r\nllYh+WP6d+DownPdwEokH8pXCiHcBewKeH3KIFAkG8cUHruF5MP6uiTX368HzC+8rxtVvFLbjoKD\nQwirhhD+h2Txxd5F9czH4PBRkr3nkJwK+Sbwbu8f4ZjcV3g2sGdI7spC7+J6GhQWzcfbQDvwN+BV\n4CiS7Uk+hLAbmI9BZNFsvMX7fz9eIdkh+B/XUy96/b0q2iok9yZfSHJ514dIivx44NgQwsaFr7uB\n3oORbjsqWJ/f/w8BNYU1OXpICv63Cs9tAOweQvglsBXJ2ciLXm4+YFb0kfve738lydH5R0kWslm3\n8Pi2JKdc70Vym4iJMcb5K3ImlYci2dg6hLBu4ZdmNMmpUVOBCwpH9DVIFMnHNiGEj8cYXyXJxcXA\nucCEGOO96UyqgdRnD/oNJDsBAVYjOZNj4SIfwi8nOS1/9kDOqPSUyMdfCjv+pscYTyys4TEfODXG\neHcKo2qAfcC2Y0Gfl95FsvPH0jaI9MnHLTHG6SGEoSRH8O8BbgM+AZxEcjeWKcC3Y4x/S2VYrVAh\nhNwiC632fh69n+RMjtUKp93/DnixcB3+R0g69XkxxsMXvaxnoPXbNfeF02G7+3ydW3RvZwhhZZJ7\nAY6IMZ4cknuKHhBj/H6/DKGytJTZGBljHFd4rPcexKpgS5GPY4HhMcaTC4+NjDHOGthpNZAWk42q\nRT9whxCuAaYBfyS5Vta/J4PEUuRjOkk+jowx/mBx2xhVlmXYdnw5xvi9gZ1SaSn1uWPR7UMI4Sig\nOcZ42aLvU+UoXCq+bozxpcLX/3XdfAjhUmAecDXJGT9XAMcBc8rpb8pyl/s+p0H2/lLsBzwZY/x7\n7/OL/JJsQ7L3a3zh2ntVqOXIxmkxxr+mMLIGkNsOFbOk2SgsuPh74EaSy7qeI8mHH74qmPlQMcuZ\njdOBHo/YV64lyEdVTFbA/xQwkuRU7COBE2OMj6Q0tgZACOHzwAkxxp1DCF8CDiM5a+PJWLj7QWF9\njmNITsNfHXiE97cb2S/3i/ngvQnwVWAMyXVt02KM/7eY9zUA9Z4qWbnMhkoxHypmabJR+JC2EXAf\nyQKcF8QY/zzgQ2vAmA8VYzZUytJ+7gjJivjbAmuR5OPFAR5ZA6Bwyn2ud4dv4Wye4cAbvH85xk7A\nwX0v3ymsvdBergcil+ma+8JpKX1/ScaQXBd7b4xxS+B5klUE1yo8/94ieTHGdj+cVy6zoVLMh4pZ\n2mwUXvsWcGCM8Ug/nFc286FizIZKWdp8AMQYfxtjnBBj/JLFvnLFGHtijN0hhFUKD51HcrbG9THG\nPwA/BWYCWy7yvufLtdjDMpb7wn+ImhDCaSGEfWKMT5DcKiIUXvIbkoVKdiyc4lI2pypoxTIbKsV8\nqJilzUbhPW8V/gCrwpkPFWM2VMqy5EOVKYRQFUI4OiSL4PV+PRm4LYQwHRgG/IFk4TxIbsXdAvxp\nsd+wTC1RiEMIHwshXBWSRa0IIewB3ElyX7/PhRDGAScDY0Nyi4CngVdIFh3w1nYVzGyoFPOhYsyG\nSjEfKsZsqBTzocUJIRxAcveDAPSu23Qo0Bhj3B5oBSYANwE7hRAuIFkw7w2gte+ZpOVuicp94dSD\njwCfLzy0KnAJyf2nZwH7kZzi9ADw48JrfhBj/LkL11Q2s6FSzIeKMRsqxXyoGLOhUsyH+gohDA8h\nPAYcAnwzxnhKjLGtz0tWDyFMA6qBF0l28kwnWVBxfIxxXPzvW+2WtQ8s9+H9e/1dCHwhhLAO8DKw\nKXApyS/HqyS/ICcANwPERW4foMpjNlSK+VAxZkOlmA8VYzZUivnQYrwLvA48GGN8IYSwegjh2yGE\ntQvPrQb8Jcb4VZLT8j8VY7wuxnhMOV9XX8pSrZYfQrgC+H8ke8BOJrlOZV1gPWBujPGyFTGkyp/Z\nUCnmQ8WYDZViPlSM2VAp5kO9QgifINmh8xCwIcnt7SYULt3Yk+TOCOsBj8QYT09v0v6xpNfc1xT+\neRGwDzAKGAJcAOwL/MhfksHJbKgU86FizIZKMR8qxmyoFPOhRcUYXwB+DxwMHBBjnFB4/O0Y4zSS\nHUAHVUKxh6U4ch9CWDnG+HYI4SrgnhjjTSGEUTHGmSt2RJU7s6FSzIeKMRsqxXyoGLOhUsyHFhWS\n293dAJwRY/xjCGEI0Jmla+mX1BKV+xDCR4DvAHmSRSqOjzE+s4JnUwaYDZViPlSM2VAp5kPFmA2V\nYj5UTAjhaODYGOOWH/jiDFuaI/cfA7YBbokxLlihUylTzIZKMR8qxmyoFPOhYsyGSjEfWpwQQj3J\nqfnTASrxqD0s5YJ6kiRJkiSp/CzRgnqSJEmSJKl8We4lSZIkSco4y70kSZIkSRlnuZckSZIkKeMs\n95IkSZIkZZzlXpIkSZKkjLPcS5IkSZKUcZZ7SZIkSZIy7v8D0b8Rj5k4KaUAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although this student appeared to be initially overwhelmed they have an inspiring story of hope and change in the days that follow. Way to keep it under 5!" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = ruby_all.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 57 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pdata = pdata.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 58 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "ruby_all = ruby_all.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 66 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pdata = pdata.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 67 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "merged_data = pdata.join(ruby_data)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 68 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "merged_data = merged_data.T" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 76 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "merged_data = merged_data[:30]" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 70 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "merged_mean = merged_data.mean()" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 72 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "merged_data['mean'] = merged_mean\n" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 79 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "day_mean = merged_data['mean']" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 83 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "day_mean = day_mean.resample(\"D\", how=['mean'])" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 91 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "day_mean.plot(kind='bar')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 100, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAFWCAYAAACrV2w2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFRJREFUeJzt3XuYXHV9x/HPJpsgYZc0qRsKikTzMF+1VqBYEdRKSiRY\nEQuWgvVGrIW01WL7SEtVfKr2gqURsVJvxSIVHxGEh0tFsZQ7eEFsqb185dKkkbYmZZeQuMKGZPvH\nmVlmZmdnzszsmd/vt+f9ep59kp3MZ76/39kz38yeOec3Q9PT0wIAxGlR6AEAAOZGkwaAiNGkASBi\nNGkAiBhNGgAiRpMGgIgNd7qDmd0naUf124fd/TeKHRIAoKZtkzazZ0iSu68dzHAAAPU6vZI+TNIy\nM/t69b7vdfdvFT8sAIDU+Zj0jyVd4O7rJW2UdLmZcRwbAAak0yvpH0h6UJLc/QEze1TSgZIeaXXn\np57aMz08vHh+RwigtKamprR58+a291m9erWWLl06mAEVZ2iuf+jUpDdIerGk3zGzgyTtL+l/5rrz\nxMRk2wcbGxvV9u07O5RcONmQtZlzGtmQtVOY80MPPaCzL7hOy5avavnvkzu26aJzTtKaNYfOa91B\nZ8fGRuf8t05N+hJJf2tmt1e/3+Due7seIQD0aNnyVRpZ8azQwwimbZN296ckvWVAYwEANOFNQACI\nGE0aACJGkwaAiNGkASBiHdfumE9TU1N66KEHespOTIxofHzXrNsPPviQhXCOJAC0NNAmvXnz5rbn\nPHar23MkASA1A23SEuc8AkA3OCYNABEb+CvpQfvqV6/Xvffeo507f6xHH/0/nXrqG3XHHbfp4Ycf\n0jvfebampnbry1/+ohYtWqQXv/hwbdz4Tm3b9iNt2nS+pqamtGPHhDZsOFOvfOWxetvbTtcRRxyp\nBx98QENDQzr//E3ab7+R0FMEsIAt+CYtSZOTk7rggot088036YorvqjPfOZS3Xffvbriisv1yCOP\n6JJL/k777LOPPvzhD+g73/mWhoaGdPrpb9YRRxypH/7wQW3adKFe+cpjNTk5qXXrTtC7332OPvSh\n8/TNb96t4447PvT0ACxgC75JDw0N6QUveIEkab/9RrR69XMlSaOjo3riiSf02GMTes97fldS1sz/\n+78f0c/93GG67LLP6YYbrtW++y7Vnj17Zh6vUjFJ0qpVB2hqamrAswFQNgNv0pM7tg38sYaG5lwF\nUAcc8DO68MKLNTw8rBtuuFbPf/4Ldckln9LrXneyXvayY3T77Tdp8+b/yvVYADDfBtqkV69erYvO\nOamn7MqVc58n3UmtsTY22CENDy/Raae9Se9615nas2evDjzwIL361eu1du06XXzxx3TllV/SS196\npHbufLynMQNAvwbapJcuXdrzOc29ruX6mtecOJM96qijddRRR0uSDj20ok2bPi5JOv74Exoy69at\n17p162fqnnba2yRJV1553cx9Nm58Z0/zAIBucAoeAESMJg0AEaNJA0DEaNIAELEFf540AAza1NSU\ntm7dMvN98yqe3azeSZNG6TQ/gaT+nkRAs61bt8y54me3q3fSpFE67Z5AEkvgYn7M14qfNGmUEkvm\nIhW8cQgAEaNJA0DEaNIAEDGaNABEjCYNABGjSQNAxGjSABAxmjQARIwmDQAR44pDAG2x1klYNGkA\nbbHWSVg0aQAd9bPWSadX4rwKb48mDaBQ87lsZxnRpAEUjlUHe0eTBhLBG3jllKtJm9kqSd+VdJy7\n/6DYIQFohTfwyqljkzazJZI+LenHxQ8HQDscNiifPK+kL5D0SUl/VPBYUDL8+g501rZJm9kZkra7\n+01m9keShgYyKpQCv74DnXV6Jb1B0rSZrZN0uKTPm9nr3f1Hre68YsUyDQ8vbvuAY2OjPQ001WzI\n2rHPeWJipOOv7ytXjnQ1lrx1Oymibr/5UOPut26nfD/ZTvlWBvG86GfOzdo2aXd/Ve3vZnaLpLPm\natDZwCbbFhsbG9X27TtzDWwhZEPWHlS21SGLlSvzXahQf1hjLuPju3KPJe+4Q9XtN5/q9uqU7yfb\nKd9sUM+LbufcrmFzCh76woUKQLFyN2l3X1vkQJAuzjgAisNSpQAQMZo0AESMY9JACXBOerpo0kAJ\ncE56umjSTZpfcfBqAwsFb/CmiSbdhFPKAMRkwTXp+Tj2xisOALFYcE2aY28AFpIF16QlXgkDWDg4\nTxoAIkaTBoCI0aQBIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAitiCvOMTCx/rIKAuaNJLE\nGi0oC5o0ksUaLSgDjkkDQMRo0gAQMZo0AESMJg0AEaNJA0DEaNIAEDGaNABEjCYNABGjSQNAxGjS\nABCxKC8LZ/EcAMhE2aRZPAcAMlE2aYnFcwBA4pg0AESNJg0AEet4uMPMFkv6rKSKpGlJG939X4se\nGAAg3yvpEyXtdfdXSHq/pD8tdkgAgJqOTdrdr5V0VvXb1ZImihwQAOBpuc7ucPc9ZnappJMl/Wqh\nIwIAzMj9xqG7n6HsuPRnzWzfwkYEAJiR543Dt0h6trv/uaSfSNpb/ZplxYplGh5e3PbxxsZGOw5q\nYmKk431Wrhxp+Vj9ZPPk22Xn0u39U8r2s71C/Zz73Uda6Wdb582nur1C7SNzif150SzP4Y6rJF1q\nZrdJWiLpbHd/svXAJts+0NjYqLZv39mxYP3l3+3u0+qx+snmybfLtpJ3zqlm+9leoX7O/e4jzfrZ\n1t3kU91eofaRVmJ9XrRr2B2btLv/RNJpuUYGAJhXXMwCABGjSQNAxGjSABAxmjQARIwmDQARo0kD\nQMRo0gAQMZo0AESMJg0AEaNJA0DEaNIAEDGaNABEjCYNABGjSQNAxGjSABCxXJ9x2IupqSlt3bql\n4baJiZGGxbAPPvgQLV26tKghAEDyCmvSW7du0dkXXKdly1e1/PfJHdt00Tknac2aQ4saAgAkr7Am\nLUnLlq/SyIpnFVkCABY0jkkDQMRo0gAQMZo0AESMJg0AEaNJA0DEaNIAEDGaNABEjCYNABGjSQNA\nxGjSABAxmjQARIwmDQARo0kDQMRo0gAQMZo0AESMJg0AEaNJA0DEaNIAEDGaNABErO1nHJrZEkmf\nk3SIpH0k/Ym7Xz+IgQEAOr+SfpOk7e7+i5JOkPSJ4ocEAKjp9GnhV0q6qvr3RZKeKnY4AIB6bZu0\nu/9YksxsVFnDft8gBgUAyHR6JS0zO1jS1ZIudvcvtbvvihXLNDy8WJI0MTHSsfjKlSMaGxuddXuo\nbJ58u+xcur1/Stl+tleq+0gr/WzrvPlUt1eofWQusT8vmnV64/AASTdJ+m13v6XzwCZn/j4+vqtj\n8fHxXdq+fWfL20Nk8+TbZVsZGxvt6v6pZfvZXqnuI8362dbd5FPdXqH2kVZifV60a9idXkm/V9Jy\nSR8wsw9Ub3uNuz+Ra6QAgL50OiZ9tqSzBzQWAEATLmYBgIjRpAEgYjRpAIgYTRoAIkaTBoCI0aQB\nIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIjRpAEgYjRpAIgYTRoAIkaTBoCI0aQB\nIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIjRpAEgYjRpAIgYTRoAIkaTBoCI0aQB\nIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIh11aTN7Cgzu6WowQAAGg3nvaOZ/YGk\nN0vaVdxwAAD1unkl/aCkUyQNFTQWAECT3E3a3a+W9FSBYwEANMl9uCOPFSuWaXh4sSRpYmKk4/1X\nrhzR2NjorNtDZfPk22Xn0u39U8r2s71S3Uda6Wdb582nur1C7SNzif150Wxem/TExOTM38fHOx+6\nHh/fpe3bd7a8PUQ2T75dtpWxsdGu7p9atp/tleo+0qyfbd1NPtXtFWofaSXW50W7ht3LKXjTPWQA\nAD3o6pW0u2+WdEwxQwEANONiFgCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIjRpAEgYjRp\nAIgYTRoAIkaTBoCI0aQBIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIjRpAEgYjRp\nAIgYTRoAIkaTBoCI0aQBIGI0aQCIGE0aACJGkwaAiNGkASBiNGkAiBhNGgAiRpMGgIjRpAEgYjRp\nAIgYTRoAIkaTBoCI0aQBIGLDne5gZosk/bWkF0t6UtI73P2hogcGAMj3SvpXJC1192MknStpU7FD\nAgDU5GnSL5f0NUly929JekmhIwIAzMjTpPeX9Hjd93uqh0AAAAXreExaWYMerft+kbvvbXXHI498\n0czfd+/erfHHJzW0aLGOPvXDs+47uWObTj75RC1ZsmTWv335y9docse2Wbffc+V5kqTpvXt08o3L\nZrLf/e73Zz12/f3rTe/dI535j62GryOPfFHDuGtq428eU/18a3bv3q1rrrlh5vuJiRGNj++SJP3a\nr53csm5t/A899EDD7UcccZL27Hl6U88131r25JNPnPl+8eJFM9lrrrlBa9YcOivT/POque22W2fG\nLGkmO9d8n3PMmS3ndfcV7234OdXUj79+mzb/vGo/5/vv9zkfv/7nVHP0qR9uuf/Uxt/8M27eP2vZ\nVvOtjb/+Z1X7Gde2f7v5Sk//nGv3r/9ZLVmypOXPt3b/5n2zfvzt9s+Qz8fa48/387H2uK3mW9Pu\n+TjXfOfj+SjNvX8edvy7Wt5/LkPT09Nt72Bmp0h6nbtvMLOXSTrP3V/bVRUAQE/yvJK+RtKrzeyu\n6vcbChwPAKBOx1fSAIBweAMQACJGkwaAiNGkASBiNGkAiFieszt6ZmY/LWm5pMfcfXyQ+bJlQ9ZO\nMRuyNnNOIxu6dk0hZ3eY2S9IuljZfwI7lV0Ms0jSb7v73UXmy5ZNddxsL+YcazZ07WZFvZL+mKQ3\nuPvW2g1m9hxJV0l6acH5smVTHTfba3DZVMddxu01S1HHpIfrB1i1VVLLy8nnOV+2bMjaKWZD1mbO\naWRD1258sF5COXzVzG6WdJOkHcpe7q+XdOMA8mXLpjputhdzjjUbunaDwq44NLOfV7bMaW0Vvbvc\n/b5B5MuWTXXcbC/mHGs2dO16RZ6Ct1fSPpKeIWmppNnLQRWXL1s2ZO0UsyFrM+c0sqFrzyjq7I4P\nSDpK0teVvbu5v6TjJd3n7rPXK5zHfNmyqY6b7cWcY82Grj3L9PT0vH9VKpU7W9w2VKlUvl10vmzZ\nVMfN9mLOsWZD127+KuzsDjN7btNtz5W0ZwD5smVD1k4xG7I2c04jG7p244P1Esrh3ZKuNrN99PQn\nu0xJ2jiAfNmyqY6b7cWcY82Grt2g0PWkzWxU2WWRj7v7453uP5/5smVD1k4xG7I2c04jG7r2jF6O\nkeT9qlQq57X7vsh82bKpjpvtxZxjzYauXfsqehW8Ozt8X2S+bNmQtVPMhqzNnNPIhq4tqfjDHc9U\ndvpJrytQ9ZwvWzZk7RSzIWsz5zSyoWvXsApe4tlUx832Ys6xZkPXbsYqeOlnUx0322tw2VTHXcbt\nNQur4KWfDVk7xWzI2sw5jWzo2o0P1ksoh1RXoEoxm+q42V7MOdZs6NoNWAVvAWRTHTfbiznHmg1d\nux6r4C2MbMjaKWZD1mbOaWRD157BKniJZ1MdN9uLOceaDV17ll6ugMlxpU2SK1ClmE113Gwv5hxr\nNnTt5i9WwUs/G7J2itmQtZlzGtnQtRsfrJdQDqmuQJViNtVxs72Yc6zZ0LUbsAreAsmGrJ1iNmRt\n5pxGNnTtGb0cI8n7leoKVClmUx0324s5x5oNXbv2xSp4CycbsnaK2ZC1mXMa2dC1JbEK3oLJhqyd\nYjZkbeacRjZ07RpWwUs8m+q42V7MOdZs6NrNWAUv/Wyq42Z7DS6b6rjLuL1mYRW89LMha6eYDVmb\nOaeRDV278cF6CeWQ6gpUKWZTHTfbiznHmg1duwGr4C2AbKrjZnsx51izoWvXYxW8hZENWTvFbMja\nzDmNbOjaM1gFL/FsquNmezHnWLOha8/SyxUwOa60SXIFqhSzqY6b7cWcY82Grt38xSp46WdD1k4x\nG7I2c04jG7p244P1Esoh1RWoUsymOm62F3OONRu6doOiLwvfX9V3N723Fah6zpctG7J2itmQtZlz\nGtnQtWsKbdIAgP4UvQoeAKAPhTVpM1tuZsuablvd42M918wO6TF7WI+5MTN7uZmt7CIzXP1zuZm9\nxMx+KmfOehljm8d7lpkd2sX9F5vZYWZ2dDe5uvwzzex53WyrfrF/5d+/qpl528fKsH/1az73z6LO\nk36HpD9UdgL3p939I9Xbb3H3tTnyr5J0kaQJSX8r6Q8k7Zb0CXe/pEN2vaTapIYk/YWkcyTJ3W/q\nkP17d3+tmb1W0oWSvifpRZLOdffrO2TPlTQi6Q5JH5f075JeKOlD7v6FDtmnJJ0v6YPuvrvdfefI\nH1OtOSXpLyV9UNKTkr7g7h/rkD1O0icljUv6WUn3SfppSW939293yM7ral95sX91t39V8z3vY2Xb\nv/rV7/7ZrKizO85U9gORpM+b2fvc/U+7yJ8v6fWSVku6XtJBynaK2yW1fRJJ+oiyq33+WdmTaJWk\nN1b/re2TSFLtf75zJb3c3beb2Yikr1XH0c4pkl4m6VZJr6hm96uOudOT6E5Jj0m618w+KulL7v5k\nh0y9TZJOV/ZRPd9QdrrPLkl3KVuRq50PSjra3R81s+cp27n+RNKXlF3W2k7Pq32Z2f2SnqnsZ1Rv\n2t0P6lCX/au7/Uvqbx8r2/4Vev9sUNThjqfcfcrdpyS9VdJaM3tjp1CdIXff4u63Sford99V/d8/\nz3mGxyh7At3p7mdI+g933+DuG3Jkl1T/fEzSo5Lk7ruU75LOvdX8/0iarN72lJ5+1dXOtLv/paTX\nSjpM0v1mdm31yZTHkLs/KOn7yhZ0edzd9yjfqltL3f3R6t//S9LPVp8UefaNflb7OkXSI5LWuPuB\ndV8dn0Bi/+p2/5L628fKtn/1m+93/2xQ1Cvpu8zsK5J+w90fM7NTJd2s7H/gPG42s29IOsHd3ydJ\nZvYJSfd3Crr7pKQNZvYeM/uUnn5i5PGomf2rpJ+SdLaZfVrSlcpeMXTyKUm3SbpX0j1mdqukY9X5\nlVn92H8o6ffN7D3Kfg2u5Iz+g5ndo+yV2l2SLjOzXZJ+kCN7h5ndqOwS1hOUreD1Vkk/zJHtebUv\nd3/QzD4uaa2kv89Rq95dZna1sl+Ze92//kHS+jLtX1LP+1jo/evrevp840HsX/Oxf/bT/xoUuQre\nWkl3136lMrN9JW109wtz5o9w9+/Vff9Lkm5199xrslaPh73d3d/U5dgPUPbk+19J69z9azlzaySt\nU/Zr0v8pW/nq+zly6939692MscVjPF/SlLs/bGa/Lmk/SZfmOf5YPUb6Qkn/5O7fMLOKpC15fh22\neVztqxtmdqyke5r2r7M6HSOtyx/u7v9U9/1aSbcNaP9apWzRnV72r+MkjamL/auaPSFvnTnypmz/\n+s8A+9crlDXoge1f/eq3/9XjPGn0rLrjvUPSE5Iuq9shz3L3T+fM/qSanarevtHdP1VUtkM+1Li7\nqfuEpM93ky1wzoMY9+HK3jR8RNmx/D2SNlV/oyksW5dfp+xY/GOSbnf37xSdbVbI4Y66d8BbHXTv\n9OZKX/mmbP278N1me61br/C6c+Rn5t/DuGceI0ftyyQ9oOy3jjuqr9bGlb3J1OkJWJ+9sy57mrJf\n7YvKtsuHGnc/dfNk57P2XdXf/Aoft5mdr+wNwuXKjsV/T9l/FH8j6deLylbz9SvZPazsN8U/NrNu\nV8HrKttKUcekf1PSSyTd0uLfOjadPvNly4asvcrdT5UkMztF0rVm9uoOmdDZVMddxjm/yt2PtuwM\nmH9x9xOrj3NrwVlJOt7dX1F/Q/UY9bckdWq0/WRnKapJn6bs1KCPuPt/DDhftmzI2kvMbMzdt7v7\n1ZZdEHK5ssXOY82mOu4yznnIzA5x9y1WPTvCsgt4is5K1ZXs3P0/627rahW8HrOzFHIKnmen57xV\n2ZsjA82XLRu49nnKDnMcUH2sC5VdrHBkxNlUx13GOZ8j6Stmtsjdv1m97XpJf15wVnp6Jbt/M7Nv\nWnZWzleqtxeZna2XRai7/apUKgeFypctG3jcB1b/PCCVbKrjLumcD6pUKkM9zrenbKVS2b9SqTy7\nUqk8Z5DZ+q9BLbB0ecB82bIha39Rktz9RwllQ9Zmzt253N17PR2tp6y7P+7ZueWXDjJbj1XwAKCz\n5jOvBpUdWJO+KmC+bNmQtVPMhqzNnNPIBq3NxSwA0CTkxVbNBnUxS+6LK/rNly2b6rjZXoPLpjru\nkNtLYS+2asDFLOlnQ9ZOMRuyNnNOIyuFvfCoARezpJ8NWTvFbMjazDmNrBT2wqMGXMySeDZk7RSz\nIWsz5zSyVbWLcH6m+ni9XMDTS3YW3jgEgJzM7IBez03vNVvUG4fPlPR+NS3Vp+zz1bYVmS9bNtVx\ns72Yc6zZTvkis60UdZ705yXdo2wx+EOULdp9h6pXGxWcL1s21XGzvZhzrNnQtRv1c015m2vWb5/j\n9juKzpctm+q42V7MOdZs6NrNX0Wd3bHdsoWvv6bss+/2l/TLyhbfLjpftmyq42Z7MedYs6FrNyiq\nSb9Z0m8p+/j2mc++k/S2AeTLlk113Gwv5hxrNnTtRr28/O72q1KpvD1UvmzZVMfN9mLOsWZD1x7U\nAktvCZgvWzZk7RSzIWsz5zSyQWsPqkn3tVRfn/myZUPWTjEbsjZzTiMbtPagmvQ7AubLlg1ZO8Vs\nyNrMOY1s0NqFNGkz+7PqnxUz+7akW83sbjOrFJ0vWzbVcbO9mHOs2dC1mxX1Svro6p8XSvo9d3+2\nsnc7Lx5AvmzZVMfN9mLOsWZD125Q9OGOfd39Lkly939W96f89ZMvWzZk7RSzIWsz5zSyoWtLvYZy\nqJjZdZKWm9kbJF2n7OPMdw0gX7ZsquNmezHnWLOhazcoqkk/W9IaZUvzbavWWansJO+i82XLpjpu\nthdzjjUbunYDlioFgIgVtVTpnAtte/VDGYvKly0bsnaK2ZC1mXMa2dC1mxV1uOP7klZJmmi6fVrS\n8wrOly0bsnaK2ZC1mXMa2dC1GxTVpF+u7MMej/PsU3IHmS9bNmTtFLMhazPnNLKhazco6jMOt0s6\nV9LPDzpftmzI2ilmQ9ZmzmlkQ9duxhuHABCxot44HJL0es3+jK+r3L3j/wr95MuWTXXcbC/mHGs2\ndO1mRR2TvljZyk83KjuBe1TSayStV77FRvrJly2b6rjZXsw51mzo2o36WYy6zSLXc33G191F58uW\nTXXcbC/mHGs2dO3mr6LW7lhkZr9Yf4OZvUpS3nME+8mXLRuydorZkLWZcxrZ0LUbFHW44wxJHzWz\nLyp72b9X0vck/eYA8mXLpjruUNlUx91PNtVxh8qGrt2ol5ffvX5VKpVnhMqXLZvquNlezDnWbKja\nRS36/zoz22JmD5rZ6XX/dGPR+bJlUx0324s5x5oNXbtZUcek3y/pcElHSTrLzM4YYL5s2ZC1U8yG\nrM2c08iGrt2gqGPST7r7hCSZ2UmS/tHMtgwoX7ZsquNmezHnWLOhazco6pX0FjP7qJmNuPtOSadI\n+mtJNoB82bKpjpvtxZxjzYau3aCoJv12SfcrW/VJ7r5V0rGSrhxAvmzZVMfN9mLOsWZD127A2h0A\nELGiP4gWANAHmjQARIwmDQARo0kDQMRo0gAQsf8HD4Tn5skDUI4AAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 100 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This was as far as I could take this." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/cohort_3_rails.xls b/cohort_3_rails.xls new file mode 100644 index 0000000..0f232d0 Binary files /dev/null and b/cohort_3_rails.xls differ