-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathF.tla
153 lines (115 loc) · 4.28 KB
/
F.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---- MODULE F ----
EXTENDS Naturals, FiniteSets, Sequences
(* 1. Set of all permutations of {"T","L","A"} including repetitions. *)
PermsWithReps(S) ==
[ 1..Cardinality(S) -> S ]
ASSUME
PermsWithReps({"T","L","A"}) =
{<<"T", "T", "T">>, <<"T", "T", "L">>, <<"T", "T", "A">>,
<<"T", "L", "T">>, <<"T", "L", "L">>, <<"T", "L", "A">>,
<<"T", "A", "T">>, <<"T", "A", "L">>, <<"T", "A", "A">>,
<<"L", "T", "T">>, <<"L", "T", "L">>, <<"L", "T", "A">>,
<<"L", "L", "T">>, <<"L", "L", "L">>, <<"L", "L", "A">>,
<<"L", "A", "T">>, <<"L", "A", "L">>, <<"L", "A", "A">>,
<<"A", "T", "T">>, <<"A", "T", "L">>, <<"A", "T", "A">>,
<<"A", "L", "T">>, <<"A", "L", "L">>, <<"A", "L", "A">>,
<<"A", "A", "T">>, <<"A", "A", "L">>, <<"A", "A", "A">>}
(* 2. All combinations of a two-digit lock. *)
TwoDigitLock ==
[1..2 -> 0..9]
ASSUME
/\ (0..9) \X (0..9) = TwoDigitLock
/\ {<<n,m>> : n,m \in 10..19} \notin SUBSET TwoDigitLock
(* 3. All combinations of a three-digit lock. *)
ThreeDigitLock ==
[1..3 -> 0..9]
ASSUME
/\ (0..9) \X (0..9) \X (0..9) = ThreeDigitLock
/\ {<<n,m,o>> : n,m,o \in 10..19} \notin SUBSET ThreeDigitLock
(* 4. All pairs (including repetitions) of the natural numbers. *)
PairsOfNaturals ==
[1..2 -> Nat]
ASSUME
{<<n,m>> : n,m \in 0..100} \subseteq PairsOfNaturals
(* 5. All triples... *)
TriplesOfNaturals ==
[1..3 -> Nat]
ASSUME
{<<n,m,o>> : n,m,o \in 0..25} \subseteq TriplesOfNaturals
(* 6. Set of all pairs and triples... *)
PairsAndTriplesOfNaturals ==
[1..2 -> Nat] \cup [1..3 -> Nat]
ASSUME
/\ {<<n,m>> : n,m \in 0..100} \subseteq PairsAndTriplesOfNaturals
/\ {<<n,m,o>> : n,m,o \in 0..25} \subseteq PairsAndTriplesOfNaturals
(* 7. What is the Cardinality of 3. ? *)
Cardinality3 ==
Cardinality(ThreeDigitLock)
ASSUME Cardinality3 = 1000
(* 8. What is the Cardinality of 6. (PairsAndTriplesOfNaturals) ? *)
--------------------------------------------------------------
(* 9. The range/image/co-domain of a function. *)
Range(f) == { f[x]: x \in DOMAIN f }
ASSUME Range([a |-> 1, b |-> 2, c |-> 3]) = 1..3
(* 10. The permutations of a set _without_ repetition. *)
Perms(S) ==
{ f \in [S -> S] :
Range(f) = S }
ASSUME Perms({1,2,3}) =
{<<1, 2, 3>>, <<1, 3, 2>>,
<<2, 1, 3>>, <<2, 3, 1>>,
<<3, 1, 2>>, <<3, 2, 1>>}
Perms2(S) ==
\* If for all w in S there exists a v in S for which f[v]=w,
\* there can be no repetitions as a consequence. The predicate
\* demands for all elements of S to be in the range of f.
{ f \in [S -> S] :
\A w \in S :
\E v \in S : f[v]=w }
ASSUME Perms2({1,2,3}) =
{<<1, 2, 3>>, <<1, 3, 2>>,
<<2, 1, 3>>, <<2, 3, 1>>,
<<3, 1, 2>>, <<3, 2, 1>>}
Perms3(S) ==
{ f \in [S -> S] :
\A i,j \in DOMAIN f :
i # j => f[i] # f[j] }
ASSUME Perms3({1,2,3}) =
{<<1, 2, 3>>, <<1, 3, 2>>,
<<2, 1, 3>>, <<2, 3, 1>>,
<<3, 1, 2>>, <<3, 2, 1>>}
(* 11. Reverse a sequence (a function with domain 1..N). *)
Reverse(seq) ==
[ i \in 1..Len(seq) |-> seq[Len(seq)+1 - i] ]
ASSUME Reverse(<<1, 2, 3>>) = <<3, 2, 1>>
ASSUME Reverse(<<>>) = <<>>
(* 12. An (infix) operator to quickly define a function mapping an x to a y. *)
x :> y ==
[ e \in {x} |-> y ]
ASSUME "x" :> 42 = [ x |-> 42 ]
(* 13. Merge two functions f and g *)
f ++ g ==
[x \in (DOMAIN f) \cup (DOMAIN g) |-> IF x \in DOMAIN f THEN f[x] ELSE g[x]]
ASSUME <<1,2,3>> ++ [i \in 1..6 |-> i] = <<1, 2, 3, 4, 5, 6>>
(* 14. Advanced!!! Inverse of a function f (swap the domain and range). *)
Inverse(f) ==
CHOOSE g \in [ Range(f) -> DOMAIN f] : \A s \in DOMAIN f: g[f[s]]=s
ASSUME Inverse(("a" :> 0) ++ ("b" :> 1) ++ ("c" :> 2)) =
((0 :> "a") ++ (1 :> "b") ++ (2 :> "c"))
--------------------------------------------------------------
\* Mutual recursion becomes possible
\* with recursive *operators*.
\* Evaluate in the tlcrepl with:
\* LET F == INSTANCE F IN F!IsEven(42)
----------------------
RECURSIVE IsEven(_)
RECURSIVE IsOdd(_)
IsEven(n) ==
IF n = 0
THEN TRUE
ELSE IsOdd(n-1)
IsOdd(n) ==
IF n = 0
THEN FALSE
ELSE IsEven(n-1)
==================