-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathutils.py
116 lines (89 loc) · 2.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import pickle
import threading
from contextlib import contextmanager
from functools import wraps
from collections import deque
import tensorflow as tf
# TODO: move to utils
def _check_file(path):
return os.path.isfile(path)
def save_pickle(obj, path):
with open(path, 'wb') as f:
pickle.dump(obj, f)
def load_pickle(path):
with open(path, 'rb') as f:
obj = pickle.load(f)
return obj
def maybe_save(save_path):
def decorator(f):
@wraps(f)
def wrapper(*args, **kwargs):
if _check_file(save_path):
obj = load_pickle(save_path)
else:
obj = f(*args, **kwargs)
save_pickle(obj, save_path)
return obj
return wrapper
return decorator
def start_threads(thread_fn, args, n_threads=1):
assert n_threads == 1, "Having multiple threads causes duplicate data in the queue."
threads = []
for n in range(n_threads):
t = threading.Thread(target=thread_fn, args=args)
t.daemon = True # thread will close when parent quits
t.start()
threads.append(t)
time.sleep(1) # enqueue a bunch before dequeue
return threads
def compose(data, *funcs):
for func in funcs:
data = func(data)
return data
def set_logging_verbosity(logging_verbosity="INFO"):
if logging_verbosity == "INFO":
tf.logging.set_verbosity(tf.logging.INFO)
elif logging_verbosity == "WARN":
tf.logging.set_verbosity(tf.logging.WARN)
elif logging_verbosity == "ERROR":
tf.logging.set_verbosity(tf.logging.ERROR)
elif logging_verbosity == "DEBUG":
tf.logging.set_verbosity(tf.logging.DEBUG)
class MovingAverage(object):
def __init__(self, size):
"""
Initialize your data structure here.
:type size: int
"""
self.__size = size
self.__sum = 0
self.__q = deque([])
def next(self, val):
"""
:type val: int
:rtype: float
"""
if len(self) == self.__size:
self.__sum -= self.__q.popleft()
self.__sum += val
self.__q.append(val)
return 1.0 * self.__sum / len(self.__q)
def __len__(self):
return len(self.__q)
def count_number_of_parameters():
total_parameters = 0
for variable in tf.trainable_variables():
# shape is an array of tf.Dimension
shape = variable.get_shape()
variable_parametes = 1
for dim in shape:
variable_parametes *= dim.value
total_parameters += variable_parametes
return total_parameters
def delete_files():
pass