-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregresion.py
91 lines (84 loc) · 3.12 KB
/
regresion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import pandas as pd
import numpy as np
###################################
# a #
###################################
# url = 'http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data'
# df = pd.read_csv(url, sep='\t', header=0)
df = pd.read_csv('prostate.data', sep='\t', header=0)
df = df.drop('Unnamed: 0', axis=1)
istrain_str = df['train']
istrain = np.asarray([True if s == 'T' else False for s in istrain_str])
istest = np.logical_not(istrain)
df = df.drop('train', axis=1)
###################################
# b #
###################################
print "Dataset shape: ", df.shape
print df.info()
print df.describe()
###################################
# c #
###################################
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
df_scaled['lpsa'] = df['lpsa']
###################################
# d #
###################################
import sklearn.linear_model as lm
X = df_scaled.ix[:, :-1]
N = X.shape[0]
X.insert(X.shape[1], 'intercept', np.ones(N))
y = df_scaled['lpsa']
print y.describe()
Xtrain = X[istrain]
ytrain = y[istrain]
Xtest = X[np.logical_not(istrain)]
ytest = y[np.logical_not(istrain)]
linreg = lm.LinearRegression(fit_intercept=False)
linreg.fit(Xtrain, ytrain)
###################################
# e #
###################################
ypred_train = linreg.predict(Xtrain)
from sklearn.metrics import mean_squared_error
sum_squares = np.power(ytrain - ypred_train, 2)
mse_train = mean_squared_error(ytrain, ypred_train)
n = ytrain.shape[0]
d = Xtrain.shape[1]
var_est = mse_train * n / (n - d - 1)
diag_values = np.diag(np.linalg.pinv(np.dot(Xtrain.T, Xtrain)))
z_scores = np.divide(linreg.coef_, np.sqrt(np.multiply(var_est, diag_values)))
print "\n", "{:<15}{:<20}{}".format("Attribute", "Weight", "Z_score")
for attribute, weight, z_score in zip(Xtrain.columns.values, linreg.coef_, z_scores):
print "{:<15}{:<20}{}".format(attribute, weight, z_score)
###################################
# f #
###################################
yhat_test = linreg.predict(Xtest)
mse_test = np.mean(np.power(yhat_test - ytest, 2))
print "mse test: ", mse_test
from sklearn import cross_validation
Xm = Xtrain.as_matrix()
ym = ytrain.as_matrix()
print "{:<5}{:<20}".format("k", "mse")
for k in range(5, 11):
k_fold = cross_validation.KFold(len(Xm), k)
mse_cv = 0
for i, (train, val) in enumerate(k_fold):
linreg = lm.LinearRegression(fit_intercept=False)
linreg.fit(Xm[train], ym[train])
yhat_val = linreg.predict(Xm[val])
mse_fold = np.mean(np.power(yhat_val - ym[val], 2))
mse_cv += mse_fold
mse_cv = mse_cv / k
print "{:<5}{:<20}".format(k, mse_cv)
###################################
# g #
###################################
import statsmodels.api as sm
from matplotlib import pyplot as plt
fig = sm.qqplot(ypred_train - ytrain, fit=True, line='45')
plt.show()