This repository has been archived by the owner on Jan 12, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathgen_mcts_dpo.py
265 lines (230 loc) · 10.3 KB
/
gen_mcts_dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from functools import lru_cache
import os
import json
from glob import glob
import random
import re
from tqdm import tqdm
from itertools import groupby
import numpy as np
data_folders = [
'./jsons'
]
pattern = re.compile(r'\-?\d+\.\d+|\-?\d+')
@lru_cache(1024)
def extract_label(text: str) -> str:
if '\n####' in text:
text = text.split('\n####')[-1].replace(',','')
elif 'The answer is' in text:
text = text.split('The answer is')[-1].replace(',','')
numbers = pattern.findall(text)
if not numbers:
return None
return numbers[0]
def check(gt,ans):
gt_label = extract_label(gt)
ans_label = extract_label(ans)
# print(gt_label,ans_label)
if gt_label is None or ans_label is None:
return False
if ans_label == gt_label or abs(float(ans_label) - float(gt_label)) < 1e-5:
return True
else:
return False
final_json_list = []
def get_json(query,good,bad,history=[]):
return {'input':'','instruction':query,'output':[good,bad],'history':history}
def get_node_id(answers,ans):
return answers.index(ans)
def get_oldest_father(answers,ans,childs):
possible_fathers = []
for possible_father in childs:
if ans in childs[possible_father]:
possible_fathers.append(possible_father)
print(len(possible_fathers))
possible_father_ids = []
for possible_father in possible_fathers:
possible_father_ids.append(get_node_id(answers,possible_father))
return possible_fathers[possible_father_ids.index(min(possible_father_ids))]
def get_fathers(answers,ans,childs):
possible_fathers = []
for possible_father in childs:
if ans in childs[possible_father]:
possible_fathers.append(possible_father)
return possible_fathers
def fix_loops(answers,fathers,childs):
# 如果节点已经在fathers字典中,说明找到了环的起点
fathers_no_loop = {}
for node in childs:
for child in childs[node]:
if child not in fathers_no_loop:
fathers_no_loop[child] = [node,]
elif child in fathers_no_loop:
fathers_no_loop[child].append(child)
for ans in answers:
if ans not in fathers_no_loop:
fathers_no_loop[ans] = [None,]
return fathers_no_loop
def collect_paths(answers,gt,fathers,childs):
gold = []
for answer in answers:
if check(gt,answer):
gold.append(answer)
paths = []
for g in gold:
if g is None:
continue
path = [g,]
while g in fathers and g is not None:
father = None
for t in fathers:
if t in path:
continue
else:
father =t
g = father
if g is not None:
path.append(g)
else:
break
paths.append(path)
return paths
def rereward(paths,answers,gt,fathers,childs,gemma=0.9):
structue_reward = {}
for path in paths:
for i,ix in enumerate(path):
structue_reward[ix] = gemma**i
path_list = []
for path in paths:
path_list.extend(path)
gemma2 = 0.5*gemma
root_reward = min(structue_reward.values())*gemma
def get_reward(ans):
if ans is None:
structue_reward[ans] = root_reward
return structue_reward[ans]
if ans in path_list:
return structue_reward[ans]
if ans in structue_reward:
return structue_reward[ans]
if ans in fathers:
if fathers[ans] is None:
structue_reward[ans] = root_reward * gemma2
return structue_reward[ans]
if fathers[ans] in structue_reward:
structue_reward[ans] = structue_reward[fathers[ans]] * gemma2
return structue_reward[ans]
else:
structue_reward[ans] = get_reward(fathers[ans]) * gemma2
return structue_reward[ans]
for ans in answers:
get_reward(ans)
return structue_reward
def get_refined_ans(history_bank,hints_list,answer_list):
hints_map = {}
for ans in history_bank:
if len(history_bank[ans]) > 2:
hint = history_bank[ans][-3]
hints_map[hint] = ans
for hint in hints_list:
if hint not in hints_map:
for history in history_bank.values():
if hint in history:
hints_map[hint] = history[history.index(hint)+2]
break
dummys = ["I Don't Know","I can't understand this question.","I can't help with this question.","I don't know how to solve this question.","I don't know the answer to this question.","I don't know the answer to this question, sorry."]
startpoint = 1
for dummy in dummys:
if dummy in answer_list:
startpoint = answer_list.index(dummy) + 1
for hint in hints_list:
if hint not in hints_map:
hints_map[hint] = answer_list[hints_list.index(hint) + startpoint]
return hints_map
def collect_refine(paths,hints_reward_imp_bank,hints_map,structure_reward):
re_hints_reward_imp_bank = {}
for ans in hints_reward_imp_bank:
if len(hints_reward_imp_bank[ans]) >= 2:
re_hints_reward_imp_bank[ans] = []
for hint,_ in hints_reward_imp_bank[ans]:
reward0 = structure_reward[ans]
refined_ans = hints_map[hint]
reward1 = structure_reward[refined_ans]
re_hints_reward_imp_bank[ans].append([hint,reward1-reward0])
re_hints_reward_imp_bank[ans] = sorted(re_hints_reward_imp_bank[ans], key=lambda x: x[1], reverse=True)
re_hints_reward_imp_bank[ans] = [random.choice(list(g))[0] for k, g in groupby(re_hints_reward_imp_bank[ans], key=lambda x: x[1])]
return re_hints_reward_imp_bank
def pair_importance_sampling(rewards, actions, nums):
# Initialize an empty list to store the importance weights
weights = []
action_pairs = []
# For each pair of actions
for i in range(len(actions)):
for j in range(i+1, len(actions)):
# Calculate the difference in rewards
reward_diff = abs(rewards[i] - rewards[j])
# Use the reward difference as the weight for this pair
weights.append(reward_diff)
if rewards[i] >= rewards[j]:
action_pairs.append([actions[i],actions[j]])
else:
action_pairs.append([actions[j],actions[i]])
# Normalize the weights so they sum to 1
weights = [weight / sum(weights) for weight in weights]
action_pairs_index = list(range(len(action_pairs)))
# Sample from the actions according to the weights
sampled_actions_index = np.random.choice(action_pairs_index, size=nums, p=weights)
sampled_actions = [action_pairs[index] for index in sampled_actions_index]
return sampled_actions
def refine_prompt(query,ans):
q = f'Since we have a weak Answer, could you provide me with a relection or feedback to correct this answer better? Analyze this Answer Strictly and Critic, point out every flaw for ervery possible imperfect to minus every possible score!\nLet\'s think step by step.'
return q
for data_folder in data_folders:
for file in tqdm(glob(data_folder+'/*')):
# for file in tqdm(glob('/home/bingxing2/ailab/group/ai4phys/math/gsm8k-pathfinder-mistral7B-new-mcts-7/jsons/0913cc66580de7f71567cee17c96479a.json')):
# print(file)
data = json.load(open(file,'r'))
gold = []
for answer in data['answers_list']:
if check(data['ground_truth'],answer):
gold.append(answer)
data['fathers'] = fix_loops(data['answers_list'],data['fathers'],data['childs'])
golden_paths = collect_paths(data['answers_list'],data['ground_truth'],data['fathers'],data['childs'])
structue_reward = rereward(golden_paths,data['answers_list'],data['ground_truth'],data['fathers'],data['childs'])
hints_map = get_refined_ans(data['history_bank'],data['hints_list'],data['answers_list'])
re_hints_reward_imp_bank = collect_refine(golden_paths,data['hints_reward_imp_bank'],hints_map,structue_reward)
dpo_pairs = [] #q,good,bad
for path in golden_paths:#golden path from right answer to wrong root answers
if len(path) > 1:
for i,ix in enumerate(path):
# if ix in ["I Don't Know","I can't understand this question.","I can't help with this question.","I don't know how to solve this question.","I don't know the answer to this question.","I don't know the answer to this question, sorry."]:
# path.remove(ix)
if ix in gold and i != 0:
path.remove(ix)
if len(path) <= 1:
golden_paths.remove(path)
for path in golden_paths:
if len(path) == 2:
dpo_pairs.append([data['query'],path[0],path[-1]])
else:
pairs = pair_importance_sampling([structue_reward[node] for node in path],path,(len(path)**2)//2)
pairs = [[data['query'],pair[0],pair[-1]] for pair in pairs]
dpo_pairs.extend(pairs)
# if i < 1:
# continue
# else:
# dpo_pairs.append([data['query'],path[i-1],ix])
# for ans in re_hints_reward_imp_bank:
# if ans in ["I Don't Know","I can't understand this question.","I can't help with this question.","I don't know how to solve this question.","I don't know the answer to this question.","I don't know the answer to this question, sorry."]:
# continue
# if len(re_hints_reward_imp_bank[ans]) >= 2:
# for i,hint in enumerate(re_hints_reward_imp_bank[ans]):
# if i < 1:
# continue
# dpo_pairs.append([refine_prompt(data['query'],ans),re_hints_reward_imp_bank[ans][i-1],hint,[[data['query'],ans],]])
for dpo_pair in dpo_pairs:
final_json_list.append(get_json(*dpo_pair))
with open('data_mistral7b_pathfinder_new_mcts_answers_10_percent.json','w') as f:
random.shuffle(final_json_list)
print(len(final_json_list))
json.dump(final_json_list[:len(final_json_list)//100],f)