-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrajectory_evaluate.py
executable file
·221 lines (184 loc) · 9.22 KB
/
trajectory_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# ---------------------------------------------------------------------
# Copyright (c) 2018 TU Berlin, Communication Systems Group
# Written by Tobias Senst <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# ---------------------------------------------------------------------
import copy
import time
import sys
import numpy as np
import pickle
import util as ut
import file_parser as fp
class Trajectory:
def __init__(self, pos, from_idx, to_idx):
self.points = np.ones(shape=(int(to_idx) - int(from_idx) + 1, 2), dtype=np.float32) * 99999
self.points[0,:] = pos
self.start_index = int(from_idx)
def run(self, flow, index):
idx = index - self.start_index
if idx >= 0 and idx + 1 < self.points.shape[0]:
# position is in (x,y)
pos = self.points[idx,:]
ipos = np.floor(pos).astype(np.int32)
if ipos[0] >= 0 and ipos[1] >= 0 and ipos[0] + 1 < flow.shape[1] and ipos[1] + 1 < flow.shape[0]:
a = pos - ipos
iw00 = (1 - a[0]) * (1 - a[1])
iw01 = a[0] * (1 - a[1])
iw10 = (1 - a[0]) * a[1]
iw11 = 1 - iw00 - iw01 - iw10
self.points[idx + 1, :] = pos + \
flow[ipos[1], ipos[0]] * iw00 + \
flow[ipos[1], ipos[0] + 1] * iw01 + \
flow[ipos[1] + 1, ipos[0]] * iw10 + \
flow[ipos[1] + 1, ipos[0] + 1] * iw11
class TrajectoryEvaluator:
def __init__(self,
thresholds=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25],
dense_person_groundtruth_filename_base="DenseTracks.pb",
person_groundtruth_filename="PersonTracks.pb"):
self.dense_person_groundtruth_filename_base = None
self.person_groundtruth_filename = None
if dense_person_groundtruth_filename_base is not None:
self.dense_person_groundtruth_filename_base = copy.deepcopy(dense_person_groundtruth_filename_base)
if person_groundtruth_filename is not None:
self.person_groundtruth_filename = copy.deepcopy(person_groundtruth_filename)
self.threshold_list = copy.deepcopy(thresholds)
def compute_differenz_trajectories(self, flow_filenames, groundtruth_filename):
print(" Load ", groundtruth_filename)
ret = pickle.load(open(groundtruth_filename, "rb"))
start_points_trajectory = ret["GT_StartPoints"]
gt_trajectory = ret["GT_Trajectories"]
print(" Start TrajectoryEstimator ", flow_filenames[0])
trajectory_list = list()
for r in range(0,start_points_trajectory.shape[0]):
trajectory_list.append(Trajectory(pos = (start_points_trajectory[r,3], start_points_trajectory[r,2]) ,
from_idx = start_points_trajectory[r,0], to_idx= start_points_trajectory[r,1]))
for i, flow_file in enumerate(flow_filenames):
flow = ut.readFlowFiles(flow_file)
for trajectory_item in trajectory_list:
trajectory_item.run(flow, i)
estimated_trajectory = list()
for trajectory_item in trajectory_list:
estimated_trajectory.append(list())
for n in range(trajectory_item.points.shape[0]):
estimated_trajectory[-1].append(trajectory_item.points[n,1])
estimated_trajectory[-1].append(trajectory_item.points[n,0])
return ut.differenz_trajectory_list(gt_trajectory, estimated_trajectory)
def run_sequence(self, sequence_name):
start = time.time()
print("Start ", sequence_name)
flow_filenames = list()
filebase = None
for f in self.file_dict:
if f["dir"] == sequence_name:
filebase = f["basepath"]
flow_filenames.append(f["estflow"])
flow_filenames = sorted(flow_filenames)
result = dict()
gt_filebase = filebase + "/gt_trajectories/" + sequence_name + "/"
if self.person_groundtruth_filename is not None:
person_diff_trajectory = self.compute_differenz_trajectories(flow_filenames,
gt_filebase + self.person_groundtruth_filename)
result["person"] = ut.compute_tracking_error(person_diff_trajectory, self.threshold_list)
print("Done person_groundtruth_filename ")
if self.dense_person_groundtruth_filename_base is not None:
print("Start next")
dense_person_diff_trajectory = self.compute_differenz_trajectories(flow_filenames,
gt_filebase + self.dense_person_groundtruth_filename_base)
result["dense_person"] = ut.compute_tracking_error(dense_person_diff_trajectory, self.threshold_list)
print("Done dense_person_groundtruth_filename_base ")
print(time.time() - start)
return result
def average(self, sequences):
keys = []
if self.dense_person_groundtruth_filename_base is not None:
keys.append("dense_person")
if self.person_groundtruth_filename is not None:
keys.append("person")
result = dict()
no_sequences = 1.0 / len(sequences)
for seq_key in sequences.keys():
for key in keys:
if key in result:
result[key] = result[key] + np.array(sequences[seq_key][key]) * no_sequences
else:
result[key] = np.array(sequences[seq_key][key]) * no_sequences
return result
def run(self, file_dict):
self.file_dict = copy.deepcopy(file_dict)
result = dict()
sequence_name = ["IM01", "IM02", "IM03", "IM04", "IM05"]
static_ret = dict()
for s in sequence_name:
static_ret[s] = self.run_sequence(s)
result["static"] = self.average(static_ret)
result = {**result, **static_ret}
sequence_name = ["IM01_hDyn", "IM02_hDyn", "IM03_hDyn", "IM04_hDyn", "IM05_hDyn"]
dynamic_ret = dict()
for s in sequence_name:
dynamic_ret[s] = self.run_sequence(s)
result["dynamic"] = self.average(dynamic_ret)
result = {**result, **dynamic_ret}
result["all"] = self.average({**dynamic_ret, **static_ret})
return result
def get_statistics(self, basepath):
static_sequence_name = ["IM01", "IM02", "IM03", "IM04", "IM05"]
dynamic_sequence_name = ["IM01_hDyn", "IM02_hDyn", "IM03_hDyn", "IM04_hDyn", "IM05_hDyn"]
sequence_name = static_sequence_name + dynamic_sequence_name
length_list = list()
for seq in sequence_name:
filename_base = basepath + "/gt_trajectories/" + seq + "/"
ret = pickle.load(open(filename_base + self.person_groundtruth_filename, "rb"))
retl = ut.get_trajectory_lengths(ret["GT_Trajectories"])
length_list = length_list + retl
print("Max Length", np.max(length_list))
np.save("Person_Trajectory_Length", np.array(length_list))
print("Done Stored")
def run_parameter(flow_method, basepath):
basepath_dict = {"basepath": basepath,
"images" : basepath + "/images/",
"groundtruth": basepath + "/gt_flow/",
"estimate": basepath + "/estimate/" + flow_method + "/",
"masks": basepath + "/masks/",
}
filenames = fp.create_filename_list(basepath_dict)
evaluator = TrajectoryEvaluator()
ret_dict = evaluator.run(filenames)
ret_dict["name"] = flow_method.replace("/", "")
return ret_dict
def main():
if len(sys.argv) < 2:
print("Please provide the first argument. Root path of the CrowdFlow dataset.")
return
basepath = sys.argv[1]
method_list = list()
for n in range(2, len(sys.argv)):
method_list.append("/" + sys.argv[n] + "/" )
latex_filename = "long_term_results.tex"
result_filename = "long_term_results.pb"
result_dict = list()
for method in method_list:
result_dict.append(run_parameter(method, basepath))
print("Try to save file ", result_filename)
pickle.dump(result_dict, open( result_filename, "wb"))
print("Person Trajectories")
result_str = ut.genTrajectoryLatexTable(filename=result_filename, item_key="dense_person")
print("Dense Person Trajectories")
result_str = result_str + ut.genTrajectoryLatexTable(filename=result_filename, item_key="person")
if len(latex_filename) > 0:
with open(latex_filename, "w") as f:
f.write(result_str)
main()