-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_single.py
311 lines (261 loc) · 8.72 KB
/
run_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
from groot.datasets import epsilon_attacker
from groot.model import GrootTreeClassifier
from groot.toolbox import Model
from groot.treant import RobustDecisionTree
from groot.util import convert_numpy
from roct.maxsat import SATOptimalRobustTree
from roct.milp import OptimalRobustTree, BinaryOptimalRobustTree
import numpy as np
import json
import time
import signal
# Define exception and handler to timeout functions https://stackoverflow.com/a/25027182/15406859
class TimeoutException(Exception): # Custom exception class
pass
def timeout_handler(signum, frame): # Custom signal handler
raise TimeoutException()
signal.signal(signal.SIGALRM, timeout_handler)
def fit_groot(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
tree = GrootTreeClassifier(
max_depth=depth, attack_model=attack_model, min_samples_split=2, random_state=1
)
tree.fit(X, y)
return Model.from_groot(tree), False
def fit_treant(depth, X, y):
attacker = epsilon_attacker(X.shape[1], args.epsilon, depth)
tree = RobustDecisionTree(
max_depth=depth,
affine=False,
seed=0,
min_instances_per_node=2,
attacker=attacker,
)
# Set an alarm for args.timeout seconds
signal.alarm(args.timeout)
try:
# Try to fit the tree within args.timeout seconds
tree.fit(X, y)
return Model.from_treant(tree), False
except TimeoutException:
# If timed out, train a 0 depth dummy tree and return it
print("Timeout!")
tree = RobustDecisionTree(
max_depth=0,
affine=False,
seed=0,
min_instances_per_node=2,
attacker=attacker,
)
tree.fit(X, y)
return Model.from_treant(tree), False
def fit_maxsat_lsu(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
tree = SATOptimalRobustTree(
max_depth=depth, attack_model=attack_model, lsu=True, time_limit=args.timeout
)
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
def fit_maxsat_rc2(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
tree = SATOptimalRobustTree(max_depth=depth, attack_model=attack_model, rc2=True)
# Set an alarm for args.timeout seconds
signal.alarm(args.timeout), tree.optimal_
try:
# Try to fit the tree within args.timeout seconds
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
except TimeoutException:
# If timed out, train a 0 depth dummy tree and return it
print("Timeout!")
tree = SATOptimalRobustTree(max_depth=0, attack_model=attack_model, rc2=True)
tree.fit(X, y)
return Model.from_groot(tree), False
def fit_milp(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
tree = OptimalRobustTree(
max_depth=depth, attack_model=attack_model, time_limit=args.timeout, cpus=1
)
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
def fit_milp_warm(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
groot_tree = GrootTreeClassifier(
max_depth=depth, attack_model=attack_model, min_samples_split=2, random_state=1
)
groot_tree.fit(X, y)
tree = OptimalRobustTree(
max_depth=depth,
attack_model=attack_model,
time_limit=args.timeout,
warm_start_tree=groot_tree,
cpus=1,
)
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
def fit_bin_milp(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
tree = BinaryOptimalRobustTree(
max_depth=depth, attack_model=attack_model, time_limit=args.timeout, cpus=1
)
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
def fit_bin_milp_warm(depth, X, y):
attack_model = [args.epsilon] * X.shape[1]
groot_tree = GrootTreeClassifier(
max_depth=depth, attack_model=attack_model, min_samples_split=2, random_state=1
)
groot_tree.fit(X, y)
tree = BinaryOptimalRobustTree(
max_depth=depth,
attack_model=attack_model,
time_limit=args.timeout,
warm_start_tree=groot_tree,
cpus=1,
)
tree.fit(X, y)
return Model.from_groot(tree), tree.optimal_
algorithms = [
"groot",
"treant",
"lsu-maxsat",
"rc2-maxsat",
"milp",
"milp-warm",
"bin-milp",
"bin-milp-warm",
]
datasets = [
"banknote-authentication",
"blood-transfusion",
"breast-cancer",
"cylinder-bands",
"diabetes",
"haberman",
"ionosphere",
"wine",
]
parser = argparse.ArgumentParser(description="Fit and evaluate a robust decision tree")
parser.add_argument(
"algorithm",
type=str,
help=f"Name of the decision tree learning algorithm ({', '.join(algorithms)})",
)
parser.add_argument(
"dataset",
type=str,
help="Dataset to train / test on",
)
parser.add_argument(
"depth",
type=int,
help="Maximum depth of the decision tree",
)
parser.add_argument(
"-e",
"--epsilon",
default=0.1,
type=float,
help="L-infinity epsilon radius for adversarial examples (default 0.1)",
)
parser.add_argument(
"-t",
"--timeout",
default=None,
type=int,
help="Time limit in seconds (default None)",
)
parser.add_argument(
"-d",
"--data_dir",
default="data/",
type=str,
help="Directory containing the datasets in .npy format (default data/)",
)
parser.add_argument(
"-o",
"--output_dir",
default="out/single_results/",
type=str,
help="Directory to output results in (default out/single_results/)",
)
parser.add_argument(
"--min_depth",
default=0,
type=int,
help="Minimum tree depth to try (default 0)",
)
parser.add_argument(
"--max_depth",
default=4,
type=int,
help="Maximum tree depth to try (default 4)",
)
parser.add_argument(
"--n_splits",
default=3,
type=int,
help="Number of stratified K-fold splits for tree depth selection (default 3)",
)
args = parser.parse_args()
# Check if algorithm is supported
if args.algorithm not in algorithms:
raise ValueError(
f"Algorithm '{args.algorithm}' is not supported, must be one of ({','.join(algorithms)})"
)
# Check if dataset is supported
if args.dataset not in datasets:
raise ValueError(
f"Dataset '{args.dataset}' is not supported, must be one of ({','.join(datasets)})"
)
# Load dataset samples
X_train = np.load(args.data_dir + f"X_train_{args.dataset}.npy")
X_test = np.load(args.data_dir + f"X_test_{args.dataset}.npy")
# Load dataset labels
y_train = np.load(args.data_dir + f"y_train_{args.dataset}.npy")
y_test = np.load(args.data_dir + f"y_test_{args.dataset}.npy")
# First run GROOT once to get rid of the JIT compilation overhead
if args.algorithm == "groot":
GrootTreeClassifier(max_depth=1, attack_model=[0.1] * X_train.shape[1]).fit(X_train, y_train)
# Train a model on the given depth
start_time = time.time()
if args.algorithm == "groot":
model, optimal = fit_groot(args.depth, X_train, y_train)
elif args.algorithm == "treant":
model, optimal = fit_treant(args.depth, X_train, y_train)
elif args.algorithm == "lsu-maxsat":
model, optimal = fit_maxsat_lsu(args.depth, X_train, y_train)
elif args.algorithm == "rc2-maxsat":
model, optimal = fit_maxsat_rc2(args.depth, X_train, y_train)
elif args.algorithm == "milp":
model, optimal = fit_milp(args.depth, X_train, y_train)
elif args.algorithm == "milp-warm":
model, optimal = fit_milp_warm(args.depth, X_train, y_train)
elif args.algorithm == "bin-milp":
model, optimal = fit_bin_milp(args.depth, X_train, y_train)
elif args.algorithm == "bin-milp-warm":
model, optimal = fit_bin_milp_warm(args.depth, X_train, y_train)
runtime = time.time() - start_time
# Compute accuracy scores
train_accuracy = model.accuracy(X_train, y_train)
test_accuracy = model.accuracy(X_test, y_test)
print("Train accuracy:", train_accuracy)
print("Test accuracy:", test_accuracy)
# Compute robustness scores
train_adv_accuracy = model.adversarial_accuracy(X_train, y_train, attack="tree", epsilon=args.epsilon)
test_adv_accuracy = model.adversarial_accuracy(X_test, y_test, attack="tree", epsilon=args.epsilon)
print("Train adversarial accuracy:", train_adv_accuracy)
print("Test adversarial accuracy:", test_adv_accuracy)
# Record experiment results and save as JSON
filename = f"{args.output_dir}/{args.dataset}_{args.algorithm}_{args.epsilon}_{args.depth}.json"
results = {}
results["train_accuracy"] = train_accuracy
results["test_accuracy"] = test_accuracy
results["train_adv_accuracy"] = train_adv_accuracy
results["test_adv_accuracy"] = test_adv_accuracy
results["optimal"] = optimal
results["runtime"] = runtime
results["model"] = model.json_model
with open(filename, "w") as file:
json.dump(results, file, indent=2, default=convert_numpy)