-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_poisson.py
97 lines (87 loc) · 4.59 KB
/
train_poisson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import time
from os.path import expanduser
import torch_kfac
from torch_optimizer import Adahessian
from hessianfree.optimizer import HessianFree
from phi.torch.flow import *
TORCH.set_default_device('GPU')
for seed in range(1):
math.seed(seed)
net = u_net(1, 1)
os.path.exists(expanduser(f"~/phi/poisson_net2/{seed}")) or os.mkdir(expanduser(f"~/phi/poisson_net2/{seed}"))
torch.save(net.state_dict(), expanduser(f"~/phi/poisson_net2/{seed}/init.pth"))
for method in ['SIP', 'SGD', 'Adam', 'AdaHessian', 'HessianFreeGGN', 'kFac']:
scene = Scene.create(f"~/phi/poisson_net2/{seed}", name=method)
print(scene)
viewer = view(scene=scene, select='batch', gui='console')
if method == 'kFac':
optimizer = torch_kfac.KFAC(net, learning_rate=1e-3, damping=1e-3) # KFAC doesn't work
elif method == 'AdaHessian':
optimizer = Adahessian(net.parameters(), lr=1e-6) # 1e-4 diverges, 1e-5 too large, 1e-6 stable but bad, 1e-7 in paper
elif method == 'HessianFreeH':
optimizer = HessianFree(net.parameters(), verbose=True, curvature_opt='hessian')
elif method == 'HessianFreeGGN':
optimizer = HessianFree(net.parameters(), verbose=True, curvature_opt='ggn')
elif method == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=3e-12, momentum=0.9) # 1e-10 diverges, 3e-12 not stable
else:
optimizer = optim.Adam(net.parameters(), lr=1e-3)
net.load_state_dict(torch.load(expanduser(f"~/phi/poisson_net2/{seed}/init.pth")))
math.seed(0)
viewer.info(f"Training method: {method}")
start_time = time.perf_counter()
for training_step in viewer.range():
if method == 'kFac':
net.zero_grad()
else:
optimizer.zero_grad()
x_gt = CenteredGrid(Noise(batch(batch=128)), x=64, y=64)
y_target = field.solve_linear(field.laplace, x_gt, Solve('CG', 1e-5, 0, x0=x_gt * 0))
if method in ('Adam', 'SGD'):
prediction = field.native_call(net, y_target)
y = field.solve_linear(field.laplace, prediction, Solve('CG', 1e-5, 0, x0=x_gt * 0))
loss = y_l2 = field.l2_loss(y - y_target)
loss.sum.backward()
optimizer.step()
elif method in ['HessianFreeGGN', 'HessianFreeH']:
prediction = field.native_call(net, y_target)
y = field.solve_linear(field.laplace, prediction, Solve('CG', 1e-5, 0, x0=x_gt * 0))
y_l2 = field.l2_loss(y - y_target)
def forward():
prediction = field.native_call(net, y_target)
y = field.solve_linear(field.laplace, prediction, Solve('CG', 1e-5, 0, x0=x_gt * 0))
loss = field.l2_loss(y - y_target)
return loss.sum, prediction.values.native(prediction.values.shape)
optimizer.step(forward=forward)
elif method == 'SIP':
prediction = field.native_call(net, y_target)
x = field.stop_gradient(prediction)
y = field.solve_linear(field.laplace, x, Solve('CG', 1e-5, 0, x0=x_gt * 0))
y_l2 = field.l2_loss(y - y_target)
correction = x - field.laplace(y - y_target)
loss = field.l2_loss(prediction - correction)
loss.sum.backward()
optimizer.step()
elif method == 'kFac':
prediction = field.native_call(net, y_target)
with optimizer.track_forward():
y = field.solve_linear(field.laplace, prediction, Solve('CG', 1e-5, 0, x0=x_gt * 0))
loss = y_l2 = field.l2_loss(y - y_target)
loss_sum = loss.sum
with optimizer.track_backward():
loss_sum.backward()
optimizer.step(loss=loss_sum)
elif method == 'AdaHessian':
prediction = field.native_call(net, y_target)
y = field.solve_linear(field.laplace, prediction, Solve('CG', 1e-5, 0, x0=x_gt * 0))
loss = y_l2 = field.l2_loss(y - y_target)
loss.sum.backward(create_graph=True)
optimizer.step()
else:
raise ValueError(method)
viewer.log_scalars(x_l1=field.l1_loss(x_gt - prediction), y_l2=y_l2)
if time.perf_counter() - start_time > 60 * 60 * 7: # time limit
break
torch.save(net.state_dict(), viewer.scene.subpath(f'net_{method}.pth'))
print("All done.")