-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathblocks.py
118 lines (89 loc) · 3.12 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_scatter
class LayerNorm1D(nn.Module):
def __init__(self, dim):
super(LayerNorm1D, self).__init__()
self.norm = nn.LayerNorm(dim, eps=1e-4)
def forward(self, x):
return self.norm(x.transpose(1,2)).transpose(1,2)
class GatedResidual(nn.Module):
def __init__(self, dim):
super().__init__()
self.gate = nn.Sequential(
nn.Linear(dim, dim),
nn.Sigmoid())
self.res = nn.Sequential(
nn.Linear(dim, dim),
nn.ReLU(inplace=True),
nn.Linear(dim, dim))
def forward(self, x):
return x + self.gate(x) * self.res(x)
class SoftAgg(nn.Module):
def __init__(self, dim=512, expand=True):
super(SoftAgg, self).__init__()
self.dim = dim
self.expand = expand
self.f = nn.Linear(self.dim, self.dim)
self.g = nn.Linear(self.dim, self.dim)
self.h = nn.Linear(self.dim, self.dim)
def forward(self, x, ix):
_, jx = torch.unique(ix, return_inverse=True)
w = torch_scatter.scatter_softmax(self.g(x), jx, dim=1)
y = torch_scatter.scatter_sum(self.f(x) * w, jx, dim=1)
if self.expand:
return self.h(y)[:,jx]
return self.h(y)
class SoftAggBasic(nn.Module):
def __init__(self, dim=512, expand=True):
super(SoftAggBasic, self).__init__()
self.dim = dim
self.expand = expand
self.f = nn.Linear(self.dim, self.dim)
self.g = nn.Linear(self.dim, 1)
self.h = nn.Linear(self.dim, self.dim)
def forward(self, x, ix):
_, jx = torch.unique(ix, return_inverse=True)
w = torch_scatter.scatter_softmax(self.g(x), jx, dim=1)
y = torch_scatter.scatter_sum(self.f(x) * w, jx, dim=1)
if self.expand:
return self.h(y)[:,jx]
return self.h(y)
### Gradient Clipping and Zeroing Operations ###
GRAD_CLIP = 0.1
class GradClip(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad_x):
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x)
return grad_x.clamp(min=-0.01, max=0.01)
class GradientClip(nn.Module):
def __init__(self):
super(GradientClip, self).__init__()
def forward(self, x):
return GradClip.apply(x)
class GradZero(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad_x):
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x)
grad_x = torch.where(torch.abs(grad_x) > GRAD_CLIP, torch.zeros_like(grad_x), grad_x)
return grad_x
class GradientZero(nn.Module):
def __init__(self):
super(GradientZero, self).__init__()
def forward(self, x):
return GradZero.apply(x)
class GradMag(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad_x):
print(grad_x.abs().mean())
return grad_x