-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprojective_ops.py
121 lines (82 loc) · 3.43 KB
/
projective_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn.functional as F
from .lietorch import SE3, Sim3
MIN_DEPTH = 0.2
def extract_intrinsics(intrinsics):
return intrinsics[...,None,None,:].unbind(dim=-1)
def coords_grid(ht, wd, **kwargs):
y, x = torch.meshgrid(
torch.arange(ht).to(**kwargs).float(),
torch.arange(wd).to(**kwargs).float())
return torch.stack([x, y], dim=-1)
def iproj(patches, intrinsics):
""" inverse projection """
x, y, d = patches.unbind(dim=2)
fx, fy, cx, cy = intrinsics[...,None,None].unbind(dim=2)
i = torch.ones_like(d)
xn = (x - cx) / fx
yn = (y - cy) / fy
X = torch.stack([xn, yn, i, d], dim=-1)
return X
def proj(X, intrinsics, depth=False):
""" projection """
X, Y, Z, W = X.unbind(dim=-1)
fx, fy, cx, cy = intrinsics[...,None,None].unbind(dim=2)
# d = 0.01 * torch.ones_like(Z)
# d[Z > 0.01] = 1.0 / Z[Z > 0.01]
# d = torch.ones_like(Z)
# d[Z.abs() > 0.1] = 1.0 / Z[Z.abs() > 0.1]
d = 1.0 / Z.clamp(min=0.1)
x = fx * (d * X) + cx
y = fy * (d * Y) + cy
if depth:
return torch.stack([x, y, d], dim=-1)
return torch.stack([x, y], dim=-1)
def transform(poses, patches, intrinsics, ii, jj, kk, depth=False, valid=False, jacobian=False, tonly=False):
""" projective transform """
# backproject
X0 = iproj(patches[:,kk], intrinsics[:,ii]) # (b,n_patches,h_patch,w_patch,4), where last dim (X,Y,1,1/Z)
# transform
# poses (b,n,7)
Gij = poses[:, jj] * poses[:, ii].inv() # (b,n_patches,7)
if tonly:
Gij[...,3:] = torch.as_tensor([0,0,0,1], device=Gij.device)
X1 = Gij[:,:,None,None] * X0 # (b,n_patches,h_patch,w_patch,4), where last dim (X,Y,Z,1)
p = X1.shape[2]
# project
x1 = proj(X1, intrinsics[:,jj], depth) # (b,n_patches,h_patch,w_patch,2), where last dim (x,y)
if jacobian:
X, Y, Z, H = X1[...,p//2,p//2,:].unbind(dim=-1)
o = torch.zeros_like(H)
i = torch.zeros_like(H)
fx, fy, cx, cy = intrinsics[:,jj].unbind(dim=-1)
d = torch.zeros_like(Z)
d[Z.abs() > 0.2] = 1.0 / Z[Z.abs() > 0.2]
Ja = torch.stack([
H, o, o, o, Z, -Y,
o, H, o, -Z, o, X,
o, o, H, Y, -X, o,
o, o, o, o, o, o,
], dim=-1).view(1, len(ii), 4, 6)
Jp = torch.stack([
fx*d, o, -fx*X*d*d, o,
o, fy*d, -fy*Y*d*d, o,
], dim=-1).view(1, len(ii), 2, 4)
Jj = torch.matmul(Jp, Ja)
Ji = -Gij[:,:,None].adjT(Jj)
Jz = torch.matmul(Jp, Gij.matrix()[...,:,3:])
return x1, (Z > 0.2).float(), (Ji, Jj, Jz)
if valid:
return x1, (X1[...,p//2,p//2,2] > 0.2).float()
return x1
def point_cloud(poses, patches, intrinsics, ix):
""" generate point cloud from patches """
return poses[:,ix,None,None].inv() * iproj(patches, intrinsics[:,ix])
def flow_mag(poses, patches, intrinsics, ii, jj, kk, beta=0.3):
""" projective transform """
coords0 = transform(poses, patches, intrinsics, ii, ii, kk) # Simon: (B, 96, 3, 3, 2), should be equivalent to patches[:, kk][:, :, :2, :, :].permute((0, 1, 4, 3, 2))
coords1 = transform(poses, patches, intrinsics, ii, jj, kk, tonly=False)
coords2 = transform(poses, patches, intrinsics, ii, jj, kk, tonly=True)
flow1 = (coords1 - coords0).norm(dim=-1)
flow2 = (coords2 - coords0).norm(dim=-1)
return beta * flow1 + (1-beta) * flow2