-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_cnn_lstm.py
68 lines (57 loc) · 2.24 KB
/
train_cnn_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from data_loader_batch import DataLoader
import torch
import torch.nn.functional as f
import numpy as np
from torch.autograd import Variable
from cnn_lstm import CnnLstm
class TrainCNNLSTM:
def __init__(self):
self.seed = 1
self.batch_size = 50
self.test_batch_size = 1000
self.epoch = 1
self.learning_rate = 0.01
self.step = 100
self.train_loader = None
self.test_loader = None
self.model = CnnLstm()
def load_data(self):
data_loader = DataLoader()
self.train_loader = data_loader.get_train_data(self.batch_size)
self.test_loader = data_loader.get_test_data(self.test_batch_size)
def train(self):
optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate)
for iteration, (data, target) in enumerate(self.train_loader):
data = np.expand_dims(data, axis=1)
data = torch.FloatTensor(data)
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = self.model(data)
loss = f.nll_loss(output, target)
loss.backward()
optimizer.step()
if iteration % self.step == 0:
print('Epoch: {} | train loss: {:.4f}'.format(
self.epoch, loss.item()))
def test(self):
test_loss = 0
correct = 0
for data, target in self.test_loader:
data = np.expand_dims(data, axis=1)
data = torch.FloatTensor(data)
print(target.size)
data, target = Variable(data, volatile=True), Variable(target)
output = self.model(data)
test_loss += f.nll_loss(
output, target, size_average=False).item() # sum up batch loss
pred = torch.max(output, 1)[1].data.squeeze()
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
test_loss /= len(self.test_loader.dataset)
print(
'\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(self.test_loader.dataset),
100. * correct / len(self.test_loader.dataset)))
train = TrainCNNLSTM()
train.load_data()
train.train()
train.test()