-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
125 lines (108 loc) · 4.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import tensorflow as tf
if sys.version_info.major > 2:
from functools import reduce
def get_conv_filter(
width,
height,
in_channels,
out_channels,
dtype=tf.float32,
initializer=None,
seed=None,
name=None,
):
"""
arguments
=========
- width: int, filter width
- height: int, filter height
- in_channels: int, input channel
- out_channels: int, output channel
- dtype: data type
- initializer: filter initializer
- seed: random seed of the initializer
"""
if initializer is None:
initializer = tf.glorot_uniform_initializer(seed=seed, dtype=dtype)
filter_shape = [width, height, in_channels, out_channels]
return tf.Variable(initializer(shape=filter_shape), name=name, dtype=dtype)
def get_bias(shape, dtype=tf.float32, name=None, initializer=None, seed=None):
if initializer is None:
initializer = tf.glorot_uniform_initializer(seed=seed, dtype=dtype)
return tf.Variable(initializer(shape=shape), name=name, dtype=dtype)
def conv_layer(in_fmap, w_shape, padding="SAME", stride=1, act_fun=None, name=None):
width, height, in_channel, out_channel = w_shape
strides = [1, stride, stride, 1]
with tf.name_scope(name, "conv"):
w_filter = get_conv_filter(width, height, in_channel, out_channel)
out_fmap = tf.nn.conv2d(
in_fmap, w_filter, padding=padding, strides=strides, name="feature_map"
)
bias = get_bias(w_filter.shape.as_list()[-1:], dtype=in_fmap.dtype, name="bias")
act = tf.add(out_fmap, bias, name="logits")
if act_fun:
act = act_fun(act, name="activation")
return act
def fc_layer(in_tensor, out_dim, act_fun=None, initializer=None, name=None):
"""Fully conneted layer
"""
if initializer is None:
initializer = tf.glorot_normal_initializer(dtype=in_tensor.dtype)
w_shape = [in_tensor.shape.as_list()[-1], out_dim]
with tf.name_scope(name, "fully_connect"):
w_fc = tf.Variable(
initializer(shape=w_shape, dtype=in_tensor.dtype), name="weight"
)
bias = get_bias(
(out_dim,), dtype=in_tensor.dtype, name="bias", initializer=initializer
)
act = tf.add(tf.matmul(in_tensor, w_fc), bias, name="logits")
if act_fun:
act = act_fun(act, name="activation")
return act
def cross_entropy_loss(logits, labels, name=None, axis=-1):
"""https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L3171
"""
with tf.name_scope(name, "cross_entropy"):
prob = tf.nn.softmax(logits=logits, axis=axis)
prob = tf.clip_by_value(prob, 1e-7, 1 - 1e-7)
loss = tf.reduce_sum(-labels * tf.log(prob), name="total_loss")
return loss
def build_graph(tf_image_batch, tf_labels, tf_keep_prob, lr=1.0):
"""
tf_image_batch: None x 32 x 32 x 3
tf_labels: None x 10
tf_keep_prob: None
"""
graph = tf_image_batch.graph
with graph.as_default():
conv1 = conv_layer(tf_image_batch, [2, 2, 3, 16], padding="VALID")
conv2 = conv_layer(conv1, [3, 3, 16, 32], padding="VALID", act_fun=tf.nn.relu)
pool1 = tf.nn.max_pool(
conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID"
)
conv3 = conv_layer(pool1, [3, 3, 32, 32], stride=2, padding="VALID")
conv4 = conv_layer(
conv3, [3, 3, 32, 32], padding="VALID", stride=2, act_fun=tf.nn.relu
)
drop1 = tf.nn.dropout(conv4, keep_prob=tf_keep_prob)
pool2 = tf.nn.max_pool(
drop1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID"
)
conv5 = conv_layer(pool2, [1, 1, 32, 64], padding="VALID", act_fun=tf.nn.relu)
conv6 = conv_layer(conv5, [1, 1, 64, 128], act_fun=tf.nn.relu)
flat_conv6 = tf.reshape(
conv6, shape=[-1, reduce(lambda x, y: x * y, conv6.shape.as_list()[1:], 1)]
)
fc1 = fc_layer(flat_conv6, 128, act_fun=tf.nn.relu)
drop_2 = tf.nn.dropout(fc1, keep_prob=tf_keep_prob)
fc2 = fc_layer(drop_2, 64, act_fun=tf.nn.relu)
logits = fc_layer(fc2, 10)
tf_pred = tf.argmax(logits, axis=-1, name="pred")
total_loss = cross_entropy_loss(logits=logits, labels=tf_labels)
train_op = tf.train.AdadeltaOptimizer(learning_rate=lr, epsilon=1e-7).minimize(
total_loss
)
saver = tf.train.Saver(max_to_keep=5)
return tf_pred, train_op, total_loss, saver