-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprepare_test_data.py
57 lines (50 loc) · 1.97 KB
/
prepare_test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from random import random
import click
from torchvision.datasets import cifar
def _random_sample(accept_prob):
cifar10_train = cifar.CIFAR10("./cifar10_data", download=True, train=False)
img_data = cifar10_train.data
labels = cifar10_train.targets
mean = (img_data.astype("float32") / 255.0).mean(axis=(0, 1, 2))
std = (img_data.astype("float32") / 255.0).std(axis=(1, 2)).mean(axis=0)
label_data_map = {}
while len(label_data_map) < 10:
for label, data in zip(labels, img_data):
if label not in label_data_map and random() < accept_prob:
norm_data = (data.astype("float32") / 255.0 - mean) / std
label_data_map[label] = norm_data.ravel()
return label_data_map
@click.command()
@click.help_option("-h", "--help")
@click.option("--accept-prob", default=0.3, show_default=True)
@click.option(
"--labels",
multiple=True,
show_default=True,
type=int,
help="labels to add to testing data",
)
def prepare_test_data(accept_prob, labels):
labels = list(labels) or [i for i in range(10)]
data_map = _random_sample(accept_prob)
with open("img_data.h", "w") as fid:
fid.write("#ifndef __IMG_DATA_H\n" "#define __IMG_DATA_H\n")
num_elems = data_map[0].shape[0]
fid.write("static float imgs_data[%s][%s] = {\n" % (len(labels), num_elems))
for label in labels:
data = data_map[label]
fid.write(" {\n")
buffer = []
for elem in data:
if len(buffer) == 5:
fid.write(" " + ", ".join(buffer) + ",\n")
buffer = []
buffer.append("{:0.6f}".format(elem))
if buffer:
fid.write(" " + ", ".join(buffer) + ",\n")
fid.write(" },\n")
fid.write("};\n")
fid.write("#endif // __IMG_DATA_H\n")
click.secho("img_data.h generated", fg='yellow', bold=True)
if __name__ == "__main__":
prepare_test_data()