forked from precice/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeSteppers.py
159 lines (119 loc) · 5.17 KB
/
timeSteppers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from typing import Tuple, List
import numpy as np
import numbers
import scipy as sp
from enum import Enum
class TimeSteppingSchemes(Enum):
NEWMARK_BETA = "Newmark_beta"
GENERALIZED_ALPHA = "generalized_alpha"
RUNGE_KUTTA_4 = "runge_kutta_4"
Radau_IIA = "radauIIA" # 5th order implicit
class GeneralizedAlpha():
alpha_f = None
alpha_m = None
gamma = None
beta = None
mass = None
stiffness = None
def __init__(self, stiffness, mass, alpha_f=0.4, alpha_m=0.2) -> None:
self.alpha_f = alpha_f
self.alpha_m = alpha_m
self.gamma = 0.5 - self.alpha_m + self.alpha_f
self.beta = 0.25 * (self.gamma + 0.5)
self.stiffness = stiffness
self.mass = mass
def rhs_eval_points(self, dt) -> List[float]:
return [(1 - self.alpha_f) * dt]
def do_step(self, u, v, a, f, dt) -> Tuple[float, float, float]:
if isinstance(f, list): # if f is list, turn it into a number
f = f[0]
m = 3 * [None]
m[0] = (1 - self.alpha_m) / (self.beta * dt**2)
m[1] = (1 - self.alpha_m) / (self.beta * dt)
m[2] = (1 - self.alpha_m - 2 * self.beta) / (2 * self.beta)
k_bar = self.stiffness * (1 - self.alpha_f) + m[0] * self.mass
# do generalized alpha step
if (type(self.stiffness)) is np.ndarray:
u_new = np.linalg.solve(
k_bar,
(f - self.alpha_f * self.stiffness.dot(u) + self.mass.dot((m[0] * u + m[1] * v + m[2] * a)))
)
else:
u_new = (f - self.alpha_f * self.stiffness * u + self.mass * (m[0] * u + m[1] * v + m[2] * a)) / k_bar
a_new = 1.0 / (self.beta * dt**2) * (u_new - u - dt * v) - (1 - 2 * self.beta) / (2 * self.beta) * a
v_new = v + dt * ((1 - self.gamma) * a + self.gamma * a_new)
return u_new, v_new, a_new
class RungeKutta4():
a = np.array([[0, 0, 0, 0],
[0.5, 0, 0, 0],
[0, 0.5, 0, 0],
[0, 0, 1.0, 0]])
b = np.array([1 / 6, 1 / 3, 1 / 3, 1 / 6])
c = np.array([0, 0.5, 0.5, 1])
def __init__(self, ode_system) -> None:
self.ode_system = ode_system
pass
def rhs_eval_points(self, dt) -> List[float]:
return [self.c[0] * dt, self.c[1] * dt, self.c[2] * dt, self.c[3] * dt]
def do_step(self, u, v, a, f, dt) -> Tuple[float, float, float]:
assert (isinstance(u, type(v)))
n_stages = 4
if isinstance(f, numbers.Number): # if f is number, assume constant f
f = n_stages * [f]
if isinstance(u, np.ndarray):
x = np.concatenate([u, v])
rhs = [np.concatenate([np.array([0, 0]), f[i]]) for i in range(n_stages)]
elif isinstance(u, numbers.Number):
x = np.array([u, v])
rhs = [np.array([0, f[i]]) for i in range(n_stages)]
else:
raise Exception(f"Cannot handle input type {type(u)} of u and v")
s = n_stages * [None]
s[0] = self.ode_system.dot(x) + rhs[0]
s[1] = self.ode_system.dot(x + self.a[1, 0] * s[0] * dt) + rhs[1]
s[2] = self.ode_system.dot(x + self.a[2, 1] * s[1] * dt) + rhs[2]
s[3] = self.ode_system.dot(x + self.a[3, 2] * s[2] * dt) + rhs[3]
x_new = x
for i in range(n_stages):
x_new += dt * self.b[i] * s[i]
if isinstance(u, np.ndarray):
u_new = x_new[0:2]
v_new = x_new[2:4]
elif isinstance(u, numbers.Number):
u_new = x_new[0]
v_new = x_new[1]
a_new = None
return u_new, v_new, a_new
class RadauIIA():
def __init__(self, ode_system) -> None:
self.ode_system = ode_system
pass
def rhs_eval_points(self, dt) -> List[float]:
return np.linspace(0, dt, 5) # will create an interpolant from this later
def do_step(self, u, v, a, f, dt) -> Tuple[float, float, float]:
from brot.interpolation import do_lagrange_interpolation
ts = self.rhs_eval_points(dt)
t0 = 0
assert (isinstance(u, type(v)))
if isinstance(u, np.ndarray):
x0 = np.concatenate([u, v])
f = np.array(f)
assert (u.shape[0] == f.shape[1])
def rhs_fun(t, x): return np.concatenate([np.array([np.zeros_like(t), np.zeros_like(t)]), [
do_lagrange_interpolation(t, ts, f[:, i]) for i in range(u.shape[0])]])
elif isinstance(u, numbers.Number):
x0 = np.array([u, v])
def rhs_fun(t, x): return np.array([np.zeros_like(t), do_lagrange_interpolation(t, ts, f)])
else:
raise Exception(f"Cannot handle input type {type(u)} of u and v")
def fun(t, x):
return self.ode_system.dot(x) + rhs_fun(t, x)
# use large rtol and atol to circumvent error control.
ret = sp.integrate.solve_ivp(fun, [t0, t0 + dt], x0, method="Radau",
first_step=dt, max_step=dt, rtol=10e10, atol=10e10)
a_new = None
if isinstance(u, np.ndarray):
u_new, v_new = ret.y[0:2, -1], ret.y[2:4, -1]
elif isinstance(u, numbers.Number):
u_new, v_new = ret.y[:, -1]
return u_new, v_new, a_new