-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTransform.ele
106 lines (90 loc) · 3.09 KB
/
Transform.ele
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#[[ Transforms use homogeneous co-ordinate space to perform rotations and
# translations on position vectors and direction vectors.
#
# These wrap around a Matrix4x4 and provide a convenient API for spatial
# transformations.
#
# As a 4x4 matrix, the 3x3 rotation matrix is stored as the upper-left part,
# and the 1x3 translation vector is stored as the top of the rightmost column.
# The lower-right element is always 1.
#]]
struct Transform(matrix:Matrix4x4)
{
# Factories
identity:Transform = Transform(Matrix4x4.identity)
#[[ Create a Transform from the rotation and translation components ]]
fromRotationAndTranslation(m:Matrix3x3, v:Vector3):Transform
{
transformMatrix = Matrix4x4.fromCols(
Vector4.fromVector3(m.xCol, 0),
Vector4.fromVector3(m.yCol, 0),
Vector4.fromVector3(m.zCol, 0),
Vector4.fromVector3(v, 1)
)
return = Transform(transformMatrix)
}
fromRotation(m:Matrix3x3):Transform
{
return = fromRotationAndTranslation(m, Vector3.zero)
}
fromTranslation(v:Vector3):Transform
{
return = fromRotationAndTranslation(Matrix3x3.identity, v)
}
# Properties
#[[ Get the translation part of the Transform ]]
translation(this:Transform):Vector3 = this.matrix.wCol.toVector3
#[[ Get the rotation part of the Transform ]]
rotation(this:Transform):Matrix3x3
{
rotationMatrix = Matrix3x3.fromCols(
this.matrix.xCol.toVector3,
this.matrix.yCol.toVector3,
this.matrix.zCol.toVector3
)
return = rotationMatrix
}
# Operations
applyToVector4(this:Transform, v:Vector4):Vector4
{
return = this.matrix.vectorMul(v)
}
applyToPosition(this:Transform, v:Vector3):Vector3
{
positionVector = Vector4.fromVector3(v, 1)
return = this.applyToVector4(positionVector).toVector3
}
applyToDirection(this:Transform, v:Vector3):Vector3
{
directionVector = Vector4.fromVector3(v, 0)
return = this.applyToVector4(directionVector).toVector3
}
fromAxisAngle(axis:Vector3, angle:Num):Transform
{
c = Num.cos(angle)
s = Num.sin(angle)
t = 1.sub(c)
a = axis.normalise
m_00 = t.mul(a.x).mul(a.x).add(c)
m_11 = t.mul(a.y).mul(a.y).add(c)
m_22 = t.mul(a.z).mul(a.z).add(c)
row_0_tmp1 = a.x.mul(a.y).mul(t)
row_0_tmp2 = a.z.mul(s)
m_10 = row_0_tmp1.add(row_0_tmp2)
m_01 = row_0_tmp1.sub(row_0_tmp2)
row_1_tmp1 = a.x.mul(a.z).mul(t)
row_1_tmp2 = a.y.mul(s)
m_20 = row_1_tmp1.sub(row_1_tmp2)
m_02 = row_1_tmp1.add(row_1_tmp2)
row_2_tmp1 = a.y.mul(a.z).mul(t)
row_2_tmp2 = a.x.mul(s)
m_21 = row_2_tmp1.add(row_2_tmp2)
m_12 = row_2_tmp1.sub(row_2_tmp2)
rotationMatrix = Matrix3x3.fromRows(
Vector3(m_00, m_01, m_02),
Vector3(m_10, m_11, m_12),
Vector3(m_20, m_21, m_22)
)
return = Transform.fromRotation(rotationMatrix)
}
}