-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdistance_metrics_test.py
205 lines (178 loc) · 9.3 KB
/
distance_metrics_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (C) 2020 and later: Unicode, Inc. and others.
# License & terms of use: http://www.unicode.org/copyright.html
from distance_metrics import ImgFormat, Distance
import numpy as np
import unittest
class TestVisualGenerator(unittest.TestCase):
@classmethod
def setUpClass(cls):
# Temporary image array
# img_rgb_0 is a 3 x 3 x 3 image with all pixels set to 0
cls.img_rgb_0 = np.zeros((3, 3, 3), dtype=np.uint8)
# img_rgb_255 is a 3 x 3 x 3 image with all pixels set to 255
cls.img_rgb_255 = np.ones((3, 3, 3), dtype=np.uint8) * 255
# img_rgb_topleft is a 3 x 3 x 3 image with a square on the top-left
# corner pixel (1 x 1 x 3) set to 100
cls.img_rgb_topleft = cls.img_rgb_255.copy()
cls.img_rgb_topleft[0, 0, :] = 100
# img_rgb_botright is a 3 x 3 x 3 image with a square on the
# bottom-right corner pixel (1 x 1 x 3) set to 200
cls.img_rgb_botright = cls.img_rgb_255.copy()
cls.img_rgb_botright[2, 2, :] = 200
# img_gray_0 is a 3 x 3 image with all pixels set to 0
cls.img_gray_0 = np.zeros((3, 3), dtype=np.uint8)
# img_gray_255 is a 3 x 3 image with all pixels set to 255
cls.img_gray_255 = np.ones((3, 3), dtype=np.uint8) * 255
# img_gray_topleft is a 3 x 3 image with a square on the top-left
# corner pixel set to 100
cls.img_gray_topleft = cls.img_gray_255.copy()
cls.img_gray_topleft[0, 0] = 100
# img_gray_botright is a 3 x 3 image with a square on the top-left
# corner pixel set to 200
cls.img_gray_botright = cls.img_gray_255.copy()
cls.img_gray_botright[2, 2] = 200
# embeddings: [0, 0, 0]
cls.emb_0 = np.zeros(3, dtype=np.float64)
# embeddings: [1, 1, 1]
cls.emb_1 = np.ones(3, dtype=np.float64)
# embeddings: [1, 2, 3]
cls.emb_123 = np.array([1, 2, 3], dtype=np.float64)
def test_default_init(self):
"""Test default initialization. When default initialization value
changes, or any private attribute does not match public attribute, this
test will fail."""
dis = Distance()
self.assertEqual(dis._img_format, ImgFormat.RGB)
def test_img_format_setter(self):
# Test setter in initialization
dis = Distance(img_format=ImgFormat.A8)
self.assertEqual(dis._img_format, ImgFormat.A8)
# Test setter after initialization
dis.img_format = ImgFormat.EMBEDDINGS
self.assertEqual(dis._img_format, ImgFormat.EMBEDDINGS)
# Test exception
with self.assertRaises(TypeError):
dis.img_format = 5
def test_rgb_metrics(self):
# Test RGB metrics
dis = Distance(ImgFormat.RGB)
metrics = dis.get_metrics()
# Test manhattan distance
self.assertEqual(metrics.manhattan(self.img_rgb_0, self.img_rgb_255),
255.0)
self.assertEqual(metrics.manhattan(self.img_rgb_255, self.img_rgb_0),
255.0)
self.assertAlmostEqual(metrics.manhattan(self.img_rgb_topleft,
self.img_rgb_botright),
(abs(255 - 200) + abs(255 - 100)) / (3 * 3))
self.assertEqual(metrics.manhattan(self.img_rgb_255,
self.img_rgb_255), 0)
# Test sum squared distance
self.assertEqual(metrics.sum_squared(self.img_rgb_0,
self.img_rgb_255), 1.0)
self.assertEqual(metrics.sum_squared(self.img_rgb_0,
self.img_rgb_topleft), 1.0)
self.assertAlmostEqual(metrics.sum_squared(self.img_rgb_topleft,
self.img_rgb_botright),
0.049633607)
self.assertAlmostEqual(metrics.sum_squared(self.img_rgb_255,
self.img_rgb_botright),
0.005283143)
self.assertEqual(metrics.sum_squared(self.img_rgb_255,
self.img_rgb_255), 0)
# Test cross correlation distance
self.assertEqual(metrics.cross_correlation(self.img_rgb_0,
self.img_rgb_255), 0)
self.assertAlmostEqual(metrics.cross_correlation(
self.img_rgb_topleft, self.img_rgb_botright), 0.9755619)
self.assertAlmostEqual(metrics.cross_correlation(
self.img_rgb_255, self.img_rgb_botright), 0.99759716)
self.assertEqual(metrics.cross_correlation(self.img_rgb_255,
self.img_rgb_255), 1.0)
# Test exception
with self.assertRaises(TypeError):
metrics.manhattan(self.img_rgb_0.tolist(), self.img_rgb_255)
with self.assertRaises(ValueError):
metrics.manhattan(self.img_gray_0, self.img_rgb_255)
with self.assertRaises(TypeError):
metrics.sum_squared(self.img_rgb_0.tolist(), self.img_rgb_255)
with self.assertRaises(ValueError):
metrics.sum_squared(self.img_gray_0, self.img_rgb_255)
with self.assertRaises(TypeError):
metrics.cross_correlation(self.img_rgb_0.tolist(), self.img_rgb_255)
with self.assertRaises(ValueError):
metrics.cross_correlation(self.img_gray_0, self.img_rgb_255)
def test_gray_metrics(self):
# Test gray metrics
dis = Distance(ImgFormat.A8)
metrics = dis.get_metrics()
# Test manhattan distance
self.assertEqual(
metrics.manhattan(self.img_gray_0, self.img_gray_255), 255.0)
self.assertEqual(
metrics.manhattan(self.img_gray_255, self.img_gray_0), 255.0)
self.assertEqual(
metrics.manhattan(self.img_gray_topleft, self.img_gray_botright),
(55 + 155) / (3 * 3))
self.assertEqual(
metrics.manhattan(self.img_gray_255, self.img_gray_255), 0)
# Test sum squared distance
self.assertEqual(metrics.sum_squared(self.img_gray_0,
self.img_gray_255), 1.0)
self.assertAlmostEqual(metrics.sum_squared(self.img_gray_topleft,
self.img_gray_botright),
0.049633607)
self.assertAlmostEqual(metrics.sum_squared(self.img_gray_255,
self.img_gray_botright),
0.005283143)
self.assertEqual(metrics.sum_squared(self.img_gray_255,
self.img_gray_255), 0)
# Test cross correlation distance
self.assertEqual(metrics.cross_correlation(self.img_gray_0,
self.img_gray_255), 0)
self.assertAlmostEqual(metrics.cross_correlation(
self.img_gray_topleft, self.img_gray_botright), 0.9755619)
self.assertAlmostEqual(metrics.cross_correlation(
self.img_gray_255, self.img_gray_botright), 0.99759716)
self.assertEqual(metrics.cross_correlation(self.img_gray_255,
self.img_gray_255), 1.0)
# Test exception
with self.assertRaises(TypeError):
metrics.manhattan(self.img_gray_0.tolist(), self.img_gray_255)
with self.assertRaises(ValueError):
metrics.manhattan(self.img_rgb_0, self.img_gray_255)
with self.assertRaises(TypeError):
metrics.sum_squared(self.img_gray_0.tolist(), self.img_gray_255)
with self.assertRaises(ValueError):
metrics.sum_squared(self.img_rgb_0, self.img_gray_255)
with self.assertRaises(TypeError):
metrics.cross_correlation(self.img_gray_0.tolist(),
self.img_gray_255)
with self.assertRaises(ValueError):
metrics.cross_correlation(self.img_rgb_0, self.img_gray_255)
def test_emb_metrics(self):
# Test embedding metrics
dis = Distance(ImgFormat.EMBEDDINGS)
metrics = dis.get_metrics()
# Test manhattan distance
self.assertEqual(metrics.manhattan(self.emb_0, self.emb_1), 3)
self.assertEqual(metrics.manhattan(self.emb_1, self.emb_1), 0)
self.assertAlmostEqual(metrics.manhattan(self.emb_123, self.emb_1), 3)
self.assertAlmostEqual(metrics.manhattan(self.emb_0, self.emb_123), 6)
# Test euclidean distance
self.assertAlmostEqual(metrics.euclidean(self.emb_0, self.emb_1),
np.sqrt(3))
self.assertEqual(metrics.euclidean(self.emb_1, self.emb_1), 0)
self.assertAlmostEqual(metrics.euclidean(self.emb_123, self.emb_0),
np.sqrt((1 ** 2) + (2 ** 2) + (3 ** 2)))
# Test exception
with self.assertRaises(TypeError):
metrics.manhattan(self.emb_0.tolist(), self.emb_1)
with self.assertRaises(ValueError):
metrics.manhattan(self.emb_0, np.ones(4))
with self.assertRaises(TypeError):
metrics.euclidean(self.emb_0.tolist(), self.emb_1)
with self.assertRaises(ValueError):
metrics.euclidean(self.emb_0, np.ones(4))
if __name__ == "__main__":
unittest.main(verbosity=2)