-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathvalidate.py
166 lines (139 loc) · 8.44 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import time
import torch
import sys
sys.path.insert(0,'..')
from utils.learning_helpers import *
from utils.lie_algebra import se3_log_exp
import numpy as np
from liegroups import SE3
from pyslam.metrics import TrajectoryMetrics
def Validate(device, pose_model, spatial_trans, dset, loss):
start = time.time()
pose_model.train(False) # Set model to evaluate mode
pose_model.eval() #used for batch normalization # Set model to training mode
spatial_trans.train(False)
spatial_trans.eval()
dset_size = dset.dataset.__len__()
running_loss = 0.0
# Iterate over data.
for data in dset:
# get the inputs
imgs, gt_lie_alg, intrinsics, vo_lie_alg, gt_correction = data
gt_lie_alg = gt_lie_alg.type(torch.FloatTensor).to(device)
vo_lie_alg = vo_lie_alg.type(torch.FloatTensor).to(device)
img_list = []
for im in imgs:
img_list.append(im.to(device))
intrinsics = intrinsics.type(torch.FloatTensor).to(device)[:,0,:,:] #only need one matrix since it's constant across the sequence
corr, exp_mask, disparities = pose_model(img_list[0:3], vo_lie_alg)
pose = se3_log_exp(corr, vo_lie_alg)
minibatch_loss = loss.forward(img_list[-2], img_list[-1], pose, exp_mask, disparities, intrinsics, pose_vec_weight = vo_lie_alg, validate=True)
running_loss += minibatch_loss.item()
epoch_loss = running_loss / float(dset_size)
print('Validation Loss: {:.6f}'.format(epoch_loss))
print("Validation epoch completed in {} seconds.".format(timeSince(start)))
return epoch_loss
def test_depth_and_reconstruction(device, pose_model, spatial_trans, dset, img_idx=[0,100,200,300]):
# idx = np.random.randint(0,high=dset.dataset.__len__())
exp_mask_array = torch.zeros(0)
img_array = torch.zeros(0)
disp_array = torch.zeros(0)
for i in img_idx: #[1943,1944,1945,1946, 1947]:
imgs, gt_lie_alg, intrinsics, vo_lie_alg, gt_correction = dset.dataset.__getitem__(i)
gt_lie_alg = torch.FloatTensor(gt_lie_alg).to(device)
vo_lie_alg = torch.FloatTensor(vo_lie_alg).to(device)
img_list = []
for im in imgs:
img_list.append(im.to(device).unsqueeze(0))
intrinsics = torch.FloatTensor(intrinsics).to(device)[0,:,:].unsqueeze(0)
pose_model.train(False) # Set model to evaluate mode
pose_model.eval() #used for batch normalization # Set model to training mode
spatial_trans.train(False)
spatial_trans.eval()
corr, exp_mask, disp = pose_model(img_list[0:3], vo_lie_alg.unsqueeze(0))
###comment for stereo
exp_mask, disp = exp_mask[0], disp[0]
disp = disp.unsqueeze(1)
disp_array = torch.cat((disp_array, disp[0].cpu().detach()))
depth = 1.0/disp[:,0].clone()
pose = se3_log_exp(corr, vo_lie_alg)
img_reconstructed = spatial_trans(img_list[-2], depth, -pose.clone(), intrinsics, intrinsics.inverse())
imgs = torch.stack((img_list[-2],img_reconstructed,img_list[-1]),dim=1)[0].cpu().detach()
img_array = torch.cat((img_array, imgs))
if exp_mask is not None:
exp_mask = exp_mask.cpu().detach()
exp_mask_array = torch.cat((exp_mask_array, exp_mask))
return img_array, disp_array.numpy().squeeze(), exp_mask_array
def test_trajectory(device, pose_model, spatial_trans, dset, epoch):
pose_model.train(False) # Set model to evaluate mode
pose_model.eval() #used for batch normalization # Set model to training mode
spatial_trans.train(False)
spatial_trans.eval()
#initialize the relevant outputs
full_corr_lie_alg_stacked, rot_corr_lie_alg_stacked, gt_lie_alg_stacked, vo_lie_alg_stacked, corrections_stacked, gt_corrections_stacked= \
np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6))
for data in dset:
imgs, gt_lie_alg, intrinsics, vo_lie_alg, gt_correction = data
gt_lie_alg = gt_lie_alg.type(torch.FloatTensor).to(device)
vo_lie_alg = vo_lie_alg.type(torch.FloatTensor).to(device)
img_list = []
for im in imgs:
img_list.append(im.to(device))
corr, exp_mask, disp = pose_model(img_list[0:3], vo_lie_alg)
exp_mask, disp = exp_mask[0], disp[0][:,0]
corr_rot = torch.clone(corr)
corr_rot[:,0:3]=0
corrected_pose = se3_log_exp(corr, vo_lie_alg)
corrected_pose_rot_only = se3_log_exp(corr_rot, vo_lie_alg)
corrections_stacked = np.vstack((corrections_stacked, corr.cpu().detach().numpy()))
gt_corrections_stacked = np.vstack((gt_corrections_stacked, gt_correction.cpu().detach().numpy()))
full_corr_lie_alg_stacked = np.vstack((full_corr_lie_alg_stacked, corrected_pose.cpu().detach().numpy()))
rot_corr_lie_alg_stacked = np.vstack((rot_corr_lie_alg_stacked, corrected_pose_rot_only.cpu().detach().numpy()))
gt_lie_alg_stacked = np.vstack((gt_lie_alg_stacked, gt_lie_alg.cpu().detach().numpy()))
vo_lie_alg_stacked = np.vstack((vo_lie_alg_stacked, vo_lie_alg.cpu().detach().numpy()))
est_traj, corr_traj, corr_traj_rot, gt_traj = [],[],[],[]
gt_traj = dset.dataset.raw_gt_trials[0]
est_traj.append(gt_traj[0])
corr_traj.append(gt_traj[0])
corr_traj_rot.append(gt_traj[0])
cum_dist = [0]
for i in range(0,full_corr_lie_alg_stacked.shape[0]):
#classically estimated traj
dT = SE3.exp(vo_lie_alg_stacked[i])
new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(est_traj[i],normalize=True).inv())).inv())
est_traj.append(new_est)
cum_dist.append(cum_dist[i]+np.linalg.norm(dT.trans))
#corrected traj (rotation only)
dT = SE3.exp(rot_corr_lie_alg_stacked[i])
new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(corr_traj_rot[i],normalize=True).inv())).inv())
corr_traj_rot.append(new_est)
#
#
# #corrected traj (full pose)
dT = SE3.exp(full_corr_lie_alg_stacked[i])
new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(corr_traj[i],normalize=True).inv())).inv())
corr_traj.append(new_est)
gt_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in gt_traj]
est_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in est_traj]
corr_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in corr_traj]
corr_traj_rot_se3 = [SE3.from_matrix(T,normalize=True) for T in corr_traj_rot]
tm_est = TrajectoryMetrics(gt_traj_se3, est_traj_se3, convention = 'Twv')
tm_corr = TrajectoryMetrics(gt_traj_se3, corr_traj_se3, convention = 'Twv')
tm_corr_rot = TrajectoryMetrics(gt_traj_se3, corr_traj_rot_se3, convention = 'Twv')
if epoch >= 0:
est_mean_trans, est_mean_rot = tm_est.mean_err()
corr_mean_trans, corr_mean_rot = tm_corr.mean_err()
corr_rot_mean_trans, corr_rot_mean_rot = tm_corr_rot.mean_err()
print("Odom. mean trans. error: {} | mean rot. error: {}".format(est_mean_trans, est_mean_rot*180/np.pi))
print("Corr. mean trans. error: {} | mean rot. error: {}".format(corr_mean_trans, corr_mean_rot*180/np.pi))
print("Corr. (rot. only) mean trans. error: {} | mean rot. error: {}".format(corr_rot_mean_trans, corr_rot_mean_rot*180/np.pi))
seg_lengths = list(range(100,801,100))
_, seg_errs_est = tm_est.segment_errors(seg_lengths, rot_unit='rad')
_, seg_errs_corr = tm_corr.segment_errors(seg_lengths, rot_unit='rad')
_, seg_errs_corr_rot = tm_corr_rot.segment_errors(seg_lengths, rot_unit='rad')
print("Odom. mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_est[:,1])*100, 100*np.mean(seg_errs_est[:,2])*180/np.pi))
print("Corr. mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_corr[:,1])*100, 100*np.mean(seg_errs_corr[:,2])*180/np.pi))
print("Corr. (rot. only) mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_corr_rot[:,1])*100, 100*np.mean(seg_errs_corr_rot[:,2])*180/np.pi))
rot_seg_err = 100*np.mean(seg_errs_corr_rot[:,2])*180/np.pi
return corrections_stacked, gt_corrections_stacked, full_corr_lie_alg_stacked, vo_lie_alg_stacked, gt_lie_alg_stacked, \
np.array(corr_traj), np.array(corr_traj_rot), np.array(est_traj), np.array(gt_traj), rot_seg_err, corr_rot_mean_trans, np.array(cum_dist)