-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbytes_per_org_per_quantile.py
222 lines (195 loc) · 8.03 KB
/
bytes_per_org_per_quantile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
""" Bytes per organization by user quantile
"""
import altair as alt
import pandas as pd
import infra.dask
import infra.pd
import infra.platform
def reduce_to_pandas(outfile, dask_client):
flows = infra.dask.read_parquet(
"data/clean/flows/typical_fqdn_org_category_local_TM_DIV_none_INDEX_start")[["user", "category", "org", "bytes_up", "bytes_down"]]
# Do the grouping
flows = flows.groupby(["user", "category", "org"]).sum()
flows = flows.compute()
infra.pd.clean_write_parquet(flows, outfile)
def make_org_quantiles_plots(infile):
grouped_flows = infra.pd.read_parquet(infile)
grouped_flows = grouped_flows.reset_index()
grouped_flows["bytes_total"] = grouped_flows["bytes_up"] + grouped_flows["bytes_down"]
user_org_total = grouped_flows[["user", "org", "bytes_total"]].groupby(
["user", "org"]
).sum().reset_index()
# Filter users by time in network to eliminate early incomplete samples
user_active_ranges = infra.pd.read_parquet(
"data/clean/user_active_deltas.parquet")[["user", "days_since_first_active", "days_active", "days_online"]]
# Drop users that joined less than a week ago.
users_to_analyze = user_active_ranges.loc[
user_active_ranges["days_since_first_active"] > 7
]
# Drop users active for less than one day
users_to_analyze = users_to_analyze.loc[
users_to_analyze["days_active"] > 1,
]
# Sort orgs by total amount of bytes.
org_totals = grouped_flows.groupby("org").sum().reset_index()
org_sort_order = org_totals.sort_values("bytes_total", ascending=False).set_index("bytes_total").reset_index()
org_sort_order["rank"] = org_sort_order["bytes_total"].rank(method="min", ascending=False)
org_sort_list = org_sort_order["org"].tolist()
# Group users by quantiles of their daily use.
user_totals = user_org_total.groupby("user").sum().reset_index()
user_totals = user_totals.merge(users_to_analyze, on="user", how="inner")
user_totals["avg_daily_bytes"] = user_totals["bytes_total"] / user_totals["days_online"]
user_totals["rank_total"] = user_totals["bytes_total"].rank(method="min", pct=True)
user_totals["rank_daily"] = user_totals["avg_daily_bytes"].rank(method="min")
user_totals["quantile"] = pd.cut(user_totals["rank_daily"], 10, precision=0, right=False, include_lowest=True)
# Compute the share of each user's traffic in each org
user_shares = user_totals.rename(columns={"bytes_total": "user_bytes_total"})
user_shares = user_org_total.merge(user_shares[["user", "user_bytes_total"]], on="user", how="inner")
user_shares["org_share"] = user_shares["bytes_total"] / user_shares["user_bytes_total"]
user_shares = user_shares[["user", "org", "org_share"]]
# Merge the user quantile information back into the flows, and then group by category
quantile_flows = user_org_total.merge(user_totals[["user", "quantile", "days_online"]], on="user", how="inner")
quantile_flows["normalized_bytes_total"] = quantile_flows["bytes_total"] / quantile_flows["days_online"]
# Merge category share information into the plot frame
quantile_flows = quantile_flows.merge(user_shares, on=["user", "org"], how="inner")
# Compute means for quantiles and quantile labels
quantile_totals = quantile_flows.groupby(["quantile", "org"]).mean()
quantile_totals = quantile_totals.reset_index()
quantile_totals["quantile_str"] = quantile_totals["quantile"].apply(lambda x: str(x))
# Add sort information back to rendered dataframe
quantile_totals = quantile_totals.merge(org_sort_order[["org", "rank"]], on="org", how="inner")
# This might not be showing exactly what I want to show, since in merging
# users some users that dominate video could be overrepresented. Maybe
# want to merge on the fraction of traffic to each part from each user?
# Are users counted equally or are bytes counted equally...
alt.Chart(quantile_totals[["org", "quantile_str", "bytes_total", "rank", "normalized_bytes_total"]]).mark_bar().encode(
x="quantile_str:O",
y=alt.Y(
"normalized_bytes_total",
stack="normalize",
sort=org_sort_list,
),
color=alt.Color(
"org:N",
scale=alt.Scale(scheme="tableau20"),
sort=org_sort_list,
),
order=alt.Order(
"rank",
sort="descending",
),
).properties(
width=500,
).save(
"renders/bytes_per_org_per_quantile_bar.png",
scale_factor=2,
)
quantile_totals["normalize_mb_total"] = quantile_totals["normalized_bytes_total"] / 1000.0**2
# Generate an order based on the intervals, not the strings, to correctly sort the axis.
quantiles = quantile_totals[["quantile", "quantile_str"]].groupby(["quantile"]).first()
quantiles = quantiles["quantile_str"].to_list()
alt.Chart(
quantile_totals[["org", "quantile_str", "bytes_total", "rank", "normalize_mb_total"]]
).mark_line().encode(
x=alt.X(
"quantile_str:N",
title="User by Rank of Average Use Per Online Day (Grouped)",
sort=quantiles,
),
y=alt.Y(
"normalize_mb_total",
sort=org_sort_list,
title="Average Traffic Per Online Day (MB)"
),
color=alt.Color(
"org:N",
scale=alt.Scale(scheme="tableau20"),
sort=org_sort_list,
legend=alt.Legend(
title="Organization",
orient="none",
fillColor="white",
labelLimit=500,
padding=5,
strokeColor="black",
columns=3,
labelFontSize=8,
legendX=15,
legendY=5,
symbolLimit=20,
),
),
order=alt.Order(
"rank",
sort="descending",
),
).configure_axisX(
labelAngle=0,
labelFontSize=7,
).properties(
width=500,
).save(
"renders/bytes_per_org_per_quantile_line.png",
scale_factor=2,
)
alt.Chart(
quantile_totals[["org", "quantile_str", "org_share", "rank"]]
).mark_line().encode(
x=alt.X(
"quantile_str:N",
title="User by Rank of Average Use Per Online Day (Grouped)",
sort=quantiles,
),
y=alt.Y(
"org_share",
sort=org_sort_list,
title="Average Fraction of Traffic Per User"
),
color=alt.Color(
"org:N",
scale=alt.Scale(scheme="tableau20"),
sort=org_sort_list,
legend=alt.Legend(
title="Organization",
# orient="none",
# fillColor="white",
labelLimit=500,
# padding=5,
# strokeColor="black",
# columns=3,
# labelFontSize=8,
# legendX=15,
# legendY=5,
symbolLimit=20,
),
),
order=alt.Order(
"rank",
sort="descending",
),
).configure_axisX(
labelAngle=0,
labelFontSize=7,
).properties(
width=500,
).save(
"renders/bytes_per_org_share_per_quantile_line.png",
scale_factor=2,
)
if __name__ == "__main__":
platform = infra.platform.read_config()
graph_temporary_file = "scratch/graphs/bytes_per_org_per_quantile"
# Module specific format options
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_rows', 40)
if platform.large_compute_support:
print("Running compute tasks")
client = infra.dask.setup_platform_tuned_dask_client(10, platform)
reduce_to_pandas(outfile=graph_temporary_file, dask_client=client)
client.close()
if platform.altair_support:
print("Running vis tasks")
pd.set_option('display.max_columns', None)
make_org_quantiles_plots(graph_temporary_file)
print("Done!")