-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpurchase_timing_per_user.py
191 lines (160 loc) · 6.91 KB
/
purchase_timing_per_user.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import datetime
import pandas as pd
import altair as alt
import infra.constants
import infra.dask
import infra.pd
def generate_consolidated_purchases(outfile):
transactions = infra.pd.read_parquet(
"data/clean/transactions_TM.parquet")
# Consolidate together closely spaced small purchases by iterating
# through each user's history.
purchases = transactions.loc[transactions["kind"] == "purchase"]
users = purchases["user"].unique()
consolidated_purchases = []
for user in users:
current_user_purchases = purchases.loc[purchases["user"] == user]
current_user_purchases = current_user_purchases.sort_values(
"timestamp"
)
# Manually iterate since rolling for datetimes is not implemented.
last_purchase_time = None
consolidated_user_purchases = []
in_progress_purchase = None
for row in current_user_purchases.itertuples():
if last_purchase_time is None:
# Startup on first iteration
in_progress_purchase = _purchase_tuple_to_dict(row)
in_progress_purchase["time_since_last_purchase"] = None
last_purchase_time = row.timestamp
continue
if (row.timestamp - last_purchase_time < datetime.timedelta(seconds=60)):
in_progress_purchase["amount_bytes"] += row.amount_bytes
in_progress_purchase["amount_idr"] += row.amount_idr
else:
consolidated_user_purchases.append(in_progress_purchase)
prior_consolidated_timestamp = in_progress_purchase["timestamp"]
in_progress_purchase = _purchase_tuple_to_dict(row)
in_progress_purchase["time_since_last_purchase"] = row.timestamp - prior_consolidated_timestamp
# Always increment the last purchase time to the current row time
last_purchase_time = row.timestamp
# Cleanup remaining dangling purchase if one exists
if in_progress_purchase is not None:
consolidated_user_purchases.append(in_progress_purchase)
consolidated_purchases += consolidated_user_purchases
consolidated_purchases_frame = pd.DataFrame(consolidated_purchases)
infra.pd.clean_write_parquet(consolidated_purchases_frame, outfile)
def _purchase_tuple_to_dict(tuple):
return {'timestamp': tuple.timestamp,
'kind': tuple.kind,
'user': tuple.user,
'amount_bytes': tuple.amount_bytes,
'amount_idr': tuple.amount_idr
}
def make_plot(infile):
purchases = infra.pd.read_parquet(infile)
# Drop nulls from the first purchase
clean_purchases = purchases.dropna()
# Convert timedelta to seconds for altair compatibility
clean_purchases["time_since_last_purchase"] = clean_purchases["time_since_last_purchase"].transform(pd.Timedelta.total_seconds)
clean_purchases = clean_purchases[["user", "time_since_last_purchase", "amount_bytes"]]
aggregate = clean_purchases.groupby(["user"]).agg({"time_since_last_purchase": ["mean", lambda x: x.quantile(0.90), lambda x: x.quantile(0.99)]})
# Flatten column names
aggregate = aggregate.reset_index()
aggregate.columns = [' '.join(col).strip() for col in aggregate.columns.values]
aggregate = aggregate.rename(
columns={"time_since_last_purchase mean": "mean",
"time_since_last_purchase <lambda_0>": "q90",
"time_since_last_purchase <lambda_1>": "q99",
})
# Compute a CDF since the specific user does not matter
stats_mean = compute_cdf(aggregate, "mean", "user")
stats_mean = stats_mean.rename(columns={"mean": "value"})
stats_mean["type"] = "User's Mean"
stats_q90 = compute_cdf(aggregate, "q90", "user")
stats_q90 = stats_q90.rename(columns={"q90": "value"})
stats_q90["type"] = "User's 90% Quantile"
stats_q99 = compute_cdf(aggregate, "q99", "user")
stats_q99 = stats_q99.rename(columns={"q99": "value"})
stats_q99["type"] = "User's 99% Quantile"
stats_frame = stats_mean.append(stats_q90).append(stats_q99)
# Convert to Days
stats_frame["value"] = stats_frame["value"] / 86400
print(stats_frame)
alt.Chart(stats_frame).mark_line(clip=True).encode(
x=alt.X('value:Q',
scale=alt.Scale(type="log", domain=(0.1, 80)),
title="Time Between Purchases (Hours) (Log Scale)"
),
y=alt.Y('cdf',
title="Fraction of Users (CDF)",
scale=alt.Scale(type="linear", domain=(0, 1.0)),
),
color=alt.Color(
"type",
sort=None,
legend=alt.Legend(
title="",
orient="bottom-right",
fillColor="white",
labelLimit=500,
padding=5,
strokeColor="black",
columns=1,
),
),
strokeDash=alt.StrokeDash(
"type",
sort=None,
)
).properties(
width=500,
height=200,
).save("renders/purchase_timing_per_user_cdf.png", scale_factor=2.0)
def make_amount_plot(infile):
purchases = infra.pd.read_parquet(infile)
purchases = purchases.assign(count=1)
purchases = purchases[["amount_bytes", "count"]].groupby(["amount_bytes"]).sum().reset_index()
purchases["amount_mb"] = purchases["amount_bytes"] / 1000**2
alt.Chart(purchases).mark_point().encode(
x=alt.X(
"amount_mb",
title="Session Purchase Amount (MB) (Log Scale)",
scale=alt.Scale(
type="log",
domain=(10, 2000)
),
),
y=alt.Y(
"count",
title="Occurrences (Count) (Log Scale)",
scale=alt.Scale(
type="log",
),
),
color=alt.condition(
'datum.count>1000',
alt.ColorValue('red'), alt.ColorValue('steelblue'),
),
shape=alt.condition(
'datum.count>1000',
alt.ShapeValue('diamond'), alt.ShapeValue('triangle'),
),
).properties(
width=500,
height=300,
).save("renders/purchase_timing_per_user_clumped_amounts.png", scale_factor=2.0)
print(purchases)
def compute_cdf(frame, value_column, base_column):
# Find the PDF first
stats_frame = frame.groupby(value_column).count()[[base_column]].rename(columns = {base_column: "base_count"})
stats_frame["pdf"] = stats_frame["base_count"] / sum(stats_frame["base_count"])
stats_frame["cdf"] = stats_frame["pdf"].cumsum()
stats_frame = stats_frame.reset_index()
return stats_frame
if __name__ == "__main__":
pd.set_option('display.max_columns', None)
graph_temporary_file = "scratch/graphs/purchase_timing_per_user"
generate_consolidated_purchases(outfile=graph_temporary_file)
make_plot(graph_temporary_file)
make_amount_plot(graph_temporary_file)