-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathusers_per_week.py
209 lines (175 loc) · 8.25 KB
/
users_per_week.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
""" Computing active and registered users on the network over time
"""
import altair
import infra.constants
import infra.dask
import infra.pd
import infra.platform
import datetime
import pandas as pd
def get_registered_users_query(transactions):
# Set down the types for the dataframe
types = {
'start': 'datetime64[ns]',
"user": "object",
}
# Update the types in the dataframe
query = transactions.astype(types)[["start", "user"]].copy()
query = query.set_index("start")
# Abuse cumsum to get a counter, since the users are already
# distinct and sorted.
query = query.assign(temp=1)
query["count"] = query["temp"].cumsum()
query = query.drop(["temp"], axis="columns")
# Compute the number of users at each week, and store in the
# "user" column
query = query.drop("user", axis="columns").rename(columns={"count": "user"})
# For weeks that had no new users added, use the total from previous weeks.
query["user"] = query["user"].fillna(method="ffill")
# Get the start column back
query = query.reset_index()
# Map each start to a cohort
query["day"] = query["start"].dt.floor("d")
return query
def reduce_to_pandas(outfile, dask_client):
# Import the flows dataset
#
# Importantly, dask is lazy and doesn't actually import the whole thing,
# but just keeps track of where the file shards live on disk.
df = infra.dask.read_parquet("data/clean/flows/typical_fqdn_org_category_local_TM_DIV_none_INDEX_start")
df = df.reset_index()
df["day"] = df["start"].dt.floor("d")
# Group by cohorts and get the all the users
df = df.groupby(["day", "user"]).sum().reset_index()
df = df[["day", "user"]]
infra.pd.clean_write_parquet(df.compute(), outfile)
def make_plot(infile):
registered_users = infra.pd.read_parquet("data/clean/early_registered_users.parquet")
registered_users = registered_users.assign(start=infra.constants.MIN_DATE)
transactions = pd.read_csv("data/clean/first_time_user_transactions.csv")[["start", "user"]]
transactions = transactions.astype({
'start': 'datetime64[ns]',
"user": "object",
})[["start", "user"]].copy()
registered_users = registered_users.append(transactions).sort_values("start").groupby("user").first()
registered_users = registered_users.reset_index().sort_values("start").reset_index()
registered_users = registered_users.assign(temp=1)
registered_users["count"] = registered_users["temp"].cumsum()
registered_users = registered_users.drop(["temp", "user"], axis="columns").rename(columns={"count": "user"})
registered_users["day"] = registered_users["start"].dt.floor("d")
# Generate a dense dataframe with all days
date_range = pd.DataFrame({"day": pd.date_range(infra.constants.MIN_DATE, infra.constants.MAX_DATE, freq="1D")})
registered_users = date_range.merge(
registered_users,
how="left",
left_on="day",
right_on="day",
).fillna(method="ffill").dropna()
user_days = infra.pd.read_parquet(infile)
active_users = user_days.groupby("day")["user"].nunique()
active_users = active_users.to_frame().reset_index()
# Group weekly to capture the total number of unique users across the entire week and account for intermittent use.
weekly_users = user_days.groupby(pd.Grouper(key="day", freq="W-MON"))["user"].nunique()
weekly_users = weekly_users.to_frame().reset_index().rename(columns={"user": "week_unique_users"})
week_range = pd.DataFrame({"day": pd.date_range(infra.constants.MIN_DATE, infra.constants.MAX_DATE, freq="W-MON")})
weekly_users = weekly_users.merge(week_range, on="day", how="outer")
weekly_users.fillna(0)
monthly_users = user_days.groupby(pd.Grouper(key="day", freq="M"))["user"].nunique()
monthly_users = monthly_users.to_frame().reset_index().rename(columns={"user": "month_unique_users"})
month_range = pd.DataFrame({"day": pd.date_range(infra.constants.MIN_DATE, infra.constants.MAX_DATE, freq="M")})
monthly_users = monthly_users.merge(month_range, on="day", how="outer")
monthly_users = monthly_users.fillna(0)
# Join the active and registered users together
users = active_users.merge(registered_users,
how="right",
left_on="day",
right_on="day",
suffixes=('_active', '_registered'))
users = users.merge(weekly_users, how="outer", on="day")
users = users.merge(monthly_users, how="outer", on="day")
# For cohorts with no active users, fill zero.
users["user_active"] = users["user_active"].fillna(value=0)
users = users.rename(columns={"day": "date", "user_active": "Unique Daily Online", "user_registered": "Registered", "week_unique_users": "Unique Weekly Online", "month_unique_users": "Unique Monthly Online"})
users = users.set_index("date").sort_index()
users["Registered"] = users["Registered"].fillna(method="ffill")
users["Unique Weekly Online"] = users["Unique Weekly Online"].fillna(method="bfill")
users["Unique Monthly Online"] = users["Unique Monthly Online"].fillna(method="bfill")
users = users.reset_index()
# Limit graphs to the study period
users = users.loc[users["date"] < infra.constants.MAX_DATE]
# Compute a rolling average
users["Active 7-Day Average"] = users["Unique Daily Online"].rolling(
window=7,
).mean()
# Get the data in a form that is easily plottable
users = users.melt(id_vars=["date"], value_vars=["Registered", "Unique Monthly Online", "Unique Weekly Online", "Unique Daily Online"], var_name="user_type", value_name="num_users")
# Drop the rolling average... it wasn't useful
# users = users.melt(id_vars=["date"], value_vars=["Active", "Registered", "Active 7-Day Average", "Unique Weekly Active"], var_name="user_type", value_name="num_users")
# Reset the types of the dataframe
types = {
"date": "datetime64",
"num_users": "int64"
}
# Required since some rolling average entries are NaN before the average window is filled.
users = users.dropna()
users = users.astype(types)
users = users.sort_values(["date", "num_users"])
label_order = {
"Registered": 1,
"Unique Monthly Online": 2,
"Unique Weekly Online": 3,
"Unique Daily Online": 4,
}
# Mergesort is stablely implemented : )
users = users.sort_values(
["user_type"],
key=lambda col: col.map(lambda x: label_order[x]),
kind="mergesort",
)
users = users.reset_index()
altair.Chart(users).mark_line(interpolate='step-after').encode(
x=altair.X("date:T",
title="Time",
axis=altair.Axis(
labelSeparation=5,
labelOverlap="parity",
),
),
y=altair.Y("num_users",
title="User Count",
),
color=altair.Color(
"user_type",
title="",
sort=None,
legend=altair.Legend(
orient="top-left",
fillColor="white",
labelLimit=500,
padding=10,
strokeColor="black",
),
),
strokeDash=altair.StrokeDash(
"user_type",
sort=None,
),
).properties(width=500).save("renders/users_per_week.png", scale_factor=2)
if __name__ == "__main__":
platform = infra.platform.read_config()
# Module specific format options
pd.set_option('display.max_columns', None)
pd.set_option('display.max_colwidth', None)
pd.set_option('display.width', None)
pd.set_option('display.max_rows', 40)
graph_temporary_file = "scratch/graphs/users_per_week"
if platform.large_compute_support:
print("Running compute tasks")
print("To see execution status, check out the dask status page at localhost:8787 while the computation is running.")
client = infra.dask.setup_platform_tuned_dask_client(10, platform)
reduce_to_pandas(outfile=graph_temporary_file, dask_client=client)
client.close()
if platform.altair_support:
print("Running vis tasks")
make_plot(graph_temporary_file)
print("Done!")