-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
101 lines (75 loc) · 3.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import matplotlib.pyplot as plt
from dataset import Dataset
def expit(x):
return 1 / (1 + np.exp(-x))
class NeuralNetwork:
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.wih = np.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
self.lr = learningrate
self.activation_function = lambda x: expit(x)
def train(self, inputs_list, targets_list):
inputd = np.array(inputs_list, ndmin=2).T
targetd = np.array(targets_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputd)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
output_errors = targetd - final_outputs
hidden_errors = np.dot(self.who.T, output_errors)
self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),
np.transpose(hidden_outputs))
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),
np.transpose(inputd))
def query(self, inputs_list):
inputd = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputd)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
return final_outputs
accuracies = []
symbols = ['Chevron', 'EinSieben', 'Kreis', 'Kreuz', 'Strich']
input_nodes = 625
hidden_nodes = 20
output_nodes = 5
learning_rate = .4
epochs = 15
split = 0.95
network = NeuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
dataset = Dataset(split)
training_data_list, test_data_list = dataset.load_data()
def plotImage(inputs):
plt.imshow(np.asfarray(inputs).reshape(25, 25), cmap='Greys')
plt.show()
def test(data):
scorecard = []
for record in data:
correct_label = int(record[0])
inputs = (np.asfarray(record[1:]) / 255.0 * 0.99) + 0.01
outputs = network.query(inputs)
label = np.argmax(outputs)
if label == correct_label:
scorecard.append(1)
else:
scorecard.append(0)
scorecard_array = np.asarray(scorecard)
accuracies.append(scorecard_array.sum() / scorecard_array.size * 100)
def start():
for e in range(epochs):
for record in training_data_list:
inputs = (np.asfarray(record[1:]) / 255.0 * 0.99) + 0.01
targets = np.zeros(output_nodes) + 0.01
targets[int(record[0])] = 0.99
network.train(inputs, targets)
test(training_data_list)
print("Epoch {0} accuracy: {1:.2f}%".format(e + 1, accuracies[-1]))
if __name__ == '__main__':
start()
plt.plot(accuracies)
plt.title('Accuracy: {:.2f}%'.format(accuracies[-1]))
plt.show()