Skip to content

Commit d46e424

Browse files
committed
Update welcome to align with new changes and ensure correct name is used
1 parent 24ad314 commit d46e424

File tree

2 files changed

+41
-18
lines changed

2 files changed

+41
-18
lines changed

README.md

+8-4
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
1-
# Welcome to the Iguazio Data Science Platform
1+
# Welcome to the Iguazio MLOps Platform
22

3-
An initial introduction to the Iguazio Data Science Platform and the platform tutorials
3+
An initial introduction to the Iguazio MLOps Platform and the platform tutorials
44

55
- [Platform Overview](#platform-overview)
66
- [Data Science Workflow](#data-science-workflow)
@@ -15,7 +15,7 @@ An initial introduction to the Iguazio Data Science Platform and the platform tu
1515

1616
## Platform Overview
1717

18-
The Iguazio Data Science Platform (**"the platform"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.
18+
The Iguazio MLOps Platform (**"the platform"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.
1919
The platform incorporates the following components:
2020

2121
- A data science workbench that includes Jupyter Notebook, integrated analytics engines, and Python packages
@@ -55,7 +55,11 @@ The home directory of the platform's running-user directory (**/User/<running
5555

5656
## Getting-Started Tutorial
5757

58-
Start out by running the [getting-started tutorial](https://docs.mlrun.org/en/latest/tutorial/01-mlrun-basics.html) to familiarize yourself with the platform and experience firsthand some of its main capabilities.
58+
Start out by running the getting-started tutorial to familiarize yourself with the platform and experience firsthand some of its main capabilities.
59+
60+
<a href="demos/getting-started-tutorial/README.ipynb"><img src="./assets/images/view-tutorial-button.png" alt="View tutorial"/></a>
61+
62+
You can also view the tutorial on [GitHub](https://docs.mlrun.org/en/latest/tutorial/01-mlrun-basics.html).
5963

6064
<a id="demos"></a>
6165

welcome.ipynb

+33-14
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,13 @@
11
{
22
"cells": [
33
{
4+
"attachments": {},
45
"cell_type": "markdown",
56
"metadata": {},
67
"source": [
7-
"# Welcome to the Iguazio Data Science Platform\n",
8+
"# Welcome to the Iguazio MLOps Platform\n",
89
"\n",
9-
"An initial introduction to the Iguazio Data Science Platform and the platform tutorials"
10+
"An initial introduction to the Iguazio MLOps Platform and the platform tutorials"
1011
]
1112
},
1213
{
@@ -31,12 +32,13 @@
3132
]
3233
},
3334
{
35+
"attachments": {},
3436
"cell_type": "markdown",
3537
"metadata": {},
3638
"source": [
3739
"## Platform Overview\n",
3840
"\n",
39-
"The Iguazio Data Science Platform (**\"the platform\"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.\n",
41+
"The Iguazio MLOps Platform (**\"the platform\"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.\n",
4042
"The platform incorporates the following components:\n",
4143
"\n",
4244
"- A data science workbench that includes Jupyter Notebook, integrated analytics engines, and Python packages\n",
@@ -101,6 +103,7 @@
101103
]
102104
},
103105
{
106+
"attachments": {},
104107
"cell_type": "markdown",
105108
"metadata": {},
106109
"source": [
@@ -110,7 +113,7 @@
110113
"\n",
111114
"<a href=\"demos/getting-started-tutorial/README.ipynb\"><img src=\"./assets/images/view-tutorial-button.png\" alt=\"View tutorial\"/></a>\n",
112115
"\n",
113-
"You can also view the tutorial on [GitHub](https://github.com/mlrun/demos/blob/release/v0.6.x-latest/getting-started-tutorial/README.md)."
116+
"You can also view the tutorial on [GitHub](https://docs.mlrun.org/en/latest/tutorial/01-mlrun-basics.html)."
114117
]
115118
},
116119
{
@@ -175,6 +178,7 @@
175178
]
176179
},
177180
{
181+
"attachments": {},
178182
"cell_type": "markdown",
179183
"metadata": {},
180184
"source": [
@@ -191,7 +195,7 @@
191195
" <a href=\"demos/mask-detection/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
192196
" </td>\n",
193197
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
194-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/mask-detection/\">\n",
198+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/mask-detection/\">\n",
195199
" <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
196200
" </td>\n",
197201
" <td>This demo contains 3 notebooks where we:\n",
@@ -206,7 +210,7 @@
206210
" <a href=\"demos/fraud-prevention-feature-store/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
207211
" </td>\n",
208212
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
209-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/fraud-prevention-feature-store/\">\n",
213+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/fraud-prevention-feature-store/\">\n",
210214
" <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
211215
" </td>\n",
212216
" <td>Demonstrates the feature store usage for fraud prevention: Data ingestion & preparation; Model training & testing; Model serving; Building An Automated ML Pipeline.\n",
@@ -218,7 +222,7 @@
218222
" <a href=\"demos/news-article-nlp/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
219223
" </td>\n",
220224
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
221-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
225+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
222226
" </td>\n",
223227
" <td>This demo creates an NLP pipeline that summarizes and extract keywords from a news article URL. We will be using state-of-the-art transformer models. such as BERT. to perform these NLP tasks.\n",
224228
"Additionally, we will use MLRun's real-time inference graphs to create the pipeline. This allows for easy containerization and deployment of the pipeline on top of a production-ready Kubernetes cluster.\n",
@@ -230,13 +234,26 @@
230234
" <a href=\"demos/network-operations/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
231235
" </td>\n",
232236
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
233-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
237+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
234238
" </td>\n",
235239
" <td>This demo demonstrates how to build an automated machine-learning (ML) pipeline for predicting network outages based on network-device telemetry, also known as Network Operations (NetOps).\n",
236240
"The demo implements feature engineering, model training, testing, inference, and model monitoring (with concept-drift detection).\n",
237241
"The demo uses a offline/real-time metrics simulator to generate semi-random network telemetry data that is used across the pipeline.\n",
238242
" </td>\n",
239243
" </tr>\n",
244+
"\t <tr>\n",
245+
" <td><b>Stocks Prediction</b></td>\n",
246+
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
247+
" <a href=\"demosstocke-prediction/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
248+
" </td>\n",
249+
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
250+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/stocks-prediction/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
251+
" </td>\n",
252+
" <td>This demo illustrates using Iguazio's latest technologies and methods for model serving, the platform feature store, and the MLRun frameworks (sub-modules for the most commonly \n",
253+
"\t\tused machine and deep learning frameworks, providing features such as automatic logging, model management, and distributed training). The demo predicts stock prices, \n",
254+
"\t\tand it creates a Grafana dashbord for model analysis.\n",
255+
" </td>\n",
256+
" </tr>\n",
240257
"</table>"
241258
]
242259
},
@@ -255,6 +272,7 @@
255272
]
256273
},
257274
{
275+
"attachments": {},
258276
"cell_type": "markdown",
259277
"metadata": {},
260278
"source": [
@@ -271,7 +289,7 @@
271289
" <a href=\"demos/howto/converting-to-mlrun/mlrun-code.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
272290
" </td>\n",
273291
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
274-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
292+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
275293
" </td>\n",
276294
" <td>Demonstrates how to convert existing ML code to an MLRun project.\n",
277295
" The demo implements an MLRun project for taxi ride-fare prediction based on a <a href=\"https://www.kaggle.com/jsylas/python-version-of-top-ten-rank-r-22-m-2-88\">Kaggle notebook</a> with an ML Python script that uses data from the <a href=\"https://www.kaggle.com/c/new-york-city-taxi-fare-prediction\">New York City Taxi Fare Prediction competition</a>.\n",
@@ -283,7 +301,7 @@
283301
" <a href=\"demos/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
284302
" </td>\n",
285303
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
286-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
304+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
287305
" </td>\n",
288306
" <td>Demonstrates how to run a Spark job that reads a CSV file and logs the data set to an MLRun database.\n",
289307
" </td>\n",
@@ -294,7 +312,7 @@
294312
" <a href=\"demos/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
295313
" </td>\n",
296314
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
297-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
315+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
298316
" </td>\n",
299317
" <td>Demonstrates how to create and run a Spark job that generates a profile report from an Apache Spark DataFrame based on pandas profiling.\n",
300318
" </td>\n",
@@ -305,7 +323,7 @@
305323
" <a href=\"demos/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n",
306324
" </td>\n",
307325
" <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n",
308-
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
326+
" <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n",
309327
" </td>\n",
310328
" <td>Demonstrates how to use <a target=\"_blank\" href=\"https://github.com/GoogleCloudPlatform/spark-on-k8s-operator\">Spark Operator</a> to run a Spark job over Kubernetes with MLRun.\n",
311329
" </td>\n",
@@ -407,13 +425,14 @@
407425
]
408426
},
409427
{
428+
"attachments": {},
410429
"cell_type": "markdown",
411430
"metadata": {},
412431
"source": [
413432
"<a id=\"v3io-dir\"></a>\n",
414433
"### The v3io Directory\n",
415434
"\n",
416-
"The **v3io** directory that you see in the file browser of the Jupyter UI displays the contents of the `v3io` data mount for browsing the platform data containers. For information about the platform's data containers and how to reference data in these containers, see [Data Containers](https://www.iguazio.com/docs/latest-release/data-layer/containers/)."
435+
"The **v3io** directory that you see in the file browser of the Jupyter UI displays the contents of the `v3io` data mount for browsing the platform data containers. For information about the platform's data containers and how to reference data in these containers, see [Data Containers](https://www.iguazio.com/docs/latest-release/services/data-layer/containers/)."
417436
]
418437
},
419438
{
@@ -443,7 +462,7 @@
443462
"name": "python",
444463
"nbconvert_exporter": "python",
445464
"pygments_lexer": "ipython3",
446-
"version": "3.8.10"
465+
"version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]"
447466
},
448467
"vscode": {
449468
"interpreter": {

0 commit comments

Comments
 (0)