|
1 | 1 | { |
2 | 2 | "cells": [ |
3 | 3 | { |
| 4 | + "attachments": {}, |
4 | 5 | "cell_type": "markdown", |
5 | 6 | "metadata": {}, |
6 | 7 | "source": [ |
7 | | - "# Welcome to the Iguazio Data Science Platform\n", |
| 8 | + "# Welcome to the Iguazio MLOps Platform\n", |
8 | 9 | "\n", |
9 | | - "An initial introduction to the Iguazio Data Science Platform and the platform tutorials" |
| 10 | + "An initial introduction to the Iguazio MLOps Platform and the platform tutorials" |
10 | 11 | ] |
11 | 12 | }, |
12 | 13 | { |
|
31 | 32 | ] |
32 | 33 | }, |
33 | 34 | { |
| 35 | + "attachments": {}, |
34 | 36 | "cell_type": "markdown", |
35 | 37 | "metadata": {}, |
36 | 38 | "source": [ |
37 | 39 | "## Platform Overview\n", |
38 | 40 | "\n", |
39 | | - "The Iguazio Data Science Platform (**\"the platform\"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.\n", |
| 41 | + "The Iguazio MLOps Platform (**\"the platform\"**) is a fully integrated and secure data science platform as a service (PaaS), which simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges.\n", |
40 | 42 | "The platform incorporates the following components:\n", |
41 | 43 | "\n", |
42 | 44 | "- A data science workbench that includes Jupyter Notebook, integrated analytics engines, and Python packages\n", |
|
101 | 103 | ] |
102 | 104 | }, |
103 | 105 | { |
| 106 | + "attachments": {}, |
104 | 107 | "cell_type": "markdown", |
105 | 108 | "metadata": {}, |
106 | 109 | "source": [ |
|
110 | 113 | "\n", |
111 | 114 | "<a href=\"demos/getting-started-tutorial/README.ipynb\"><img src=\"./assets/images/view-tutorial-button.png\" alt=\"View tutorial\"/></a>\n", |
112 | 115 | "\n", |
113 | | - "You can also view the tutorial on [GitHub](https://github.com/mlrun/demos/blob/release/v0.6.x-latest/getting-started-tutorial/README.md)." |
| 116 | + "You can also view the tutorial on [GitHub](https://docs.mlrun.org/en/latest/tutorial/01-mlrun-basics.html)." |
114 | 117 | ] |
115 | 118 | }, |
116 | 119 | { |
|
175 | 178 | ] |
176 | 179 | }, |
177 | 180 | { |
| 181 | + "attachments": {}, |
178 | 182 | "cell_type": "markdown", |
179 | 183 | "metadata": {}, |
180 | 184 | "source": [ |
|
191 | 195 | " <a href=\"demos/mask-detection/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
192 | 196 | " </td>\n", |
193 | 197 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
194 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/mask-detection/\">\n", |
| 198 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/mask-detection/\">\n", |
195 | 199 | " <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
196 | 200 | " </td>\n", |
197 | 201 | " <td>This demo contains 3 notebooks where we:\n", |
|
206 | 210 | " <a href=\"demos/fraud-prevention-feature-store/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
207 | 211 | " </td>\n", |
208 | 212 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
209 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/fraud-prevention-feature-store/\">\n", |
| 213 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/fraud-prevention-feature-store/\">\n", |
210 | 214 | " <img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
211 | 215 | " </td>\n", |
212 | 216 | " <td>Demonstrates the feature store usage for fraud prevention: Data ingestion & preparation; Model training & testing; Model serving; Building An Automated ML Pipeline.\n", |
|
218 | 222 | " <a href=\"demos/news-article-nlp/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
219 | 223 | " </td>\n", |
220 | 224 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
221 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 225 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/news-article-nlp/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
222 | 226 | " </td>\n", |
223 | 227 | " <td>This demo creates an NLP pipeline that summarizes and extract keywords from a news article URL. We will be using state-of-the-art transformer models. such as BERT. to perform these NLP tasks.\n", |
224 | 228 | "Additionally, we will use MLRun's real-time inference graphs to create the pipeline. This allows for easy containerization and deployment of the pipeline on top of a production-ready Kubernetes cluster.\n", |
|
230 | 234 | " <a href=\"demos/network-operations/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
231 | 235 | " </td>\n", |
232 | 236 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
233 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 237 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/network-operations/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
234 | 238 | " </td>\n", |
235 | 239 | " <td>This demo demonstrates how to build an automated machine-learning (ML) pipeline for predicting network outages based on network-device telemetry, also known as Network Operations (NetOps).\n", |
236 | 240 | "The demo implements feature engineering, model training, testing, inference, and model monitoring (with concept-drift detection).\n", |
237 | 241 | "The demo uses a offline/real-time metrics simulator to generate semi-random network telemetry data that is used across the pipeline.\n", |
238 | 242 | " </td>\n", |
239 | 243 | " </tr>\n", |
| 244 | + "\t <tr>\n", |
| 245 | + " <td><b>Stocks Prediction</b></td>\n", |
| 246 | + " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
| 247 | + " <a href=\"demosstocke-prediction/README.md\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
| 248 | + " </td>\n", |
| 249 | + " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
| 250 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/stocks-prediction/\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 251 | + " </td>\n", |
| 252 | + " <td>This demo illustrates using Iguazio's latest technologies and methods for model serving, the platform feature store, and the MLRun frameworks (sub-modules for the most commonly \n", |
| 253 | + "\t\tused machine and deep learning frameworks, providing features such as automatic logging, model management, and distributed training). The demo predicts stock prices, \n", |
| 254 | + "\t\tand it creates a Grafana dashbord for model analysis.\n", |
| 255 | + " </td>\n", |
| 256 | + " </tr>\n", |
240 | 257 | "</table>" |
241 | 258 | ] |
242 | 259 | }, |
|
255 | 272 | ] |
256 | 273 | }, |
257 | 274 | { |
| 275 | + "attachments": {}, |
258 | 276 | "cell_type": "markdown", |
259 | 277 | "metadata": {}, |
260 | 278 | "source": [ |
|
271 | 289 | " <a href=\"demos/howto/converting-to-mlrun/mlrun-code.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
272 | 290 | " </td>\n", |
273 | 291 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
274 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.1.x/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 292 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/tree/1.3.x-latest/howto/converting-to-mlrun\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
275 | 293 | " </td>\n", |
276 | 294 | " <td>Demonstrates how to convert existing ML code to an MLRun project.\n", |
277 | 295 | " The demo implements an MLRun project for taxi ride-fare prediction based on a <a href=\"https://www.kaggle.com/jsylas/python-version-of-top-ten-rank-r-22-m-2-88\">Kaggle notebook</a> with an ML Python script that uses data from the <a href=\"https://www.kaggle.com/c/new-york-city-taxi-fare-prediction\">New York City Taxi Fare Prediction competition</a>.\n", |
|
283 | 301 | " <a href=\"demos/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
284 | 302 | " </td>\n", |
285 | 303 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
286 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 304 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-read-csv.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
287 | 305 | " </td>\n", |
288 | 306 | " <td>Demonstrates how to run a Spark job that reads a CSV file and logs the data set to an MLRun database.\n", |
289 | 307 | " </td>\n", |
|
294 | 312 | " <a href=\"demos/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
295 | 313 | " </td>\n", |
296 | 314 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
297 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 315 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-mlrun-describe.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
298 | 316 | " </td>\n", |
299 | 317 | " <td>Demonstrates how to create and run a Spark job that generates a profile report from an Apache Spark DataFrame based on pandas profiling.\n", |
300 | 318 | " </td>\n", |
|
305 | 323 | " <a href=\"demos/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/Jupyter-Logo-32px.png\"/><br>Open locally</a>\n", |
306 | 324 | " </td>\n", |
307 | 325 | " <td align=\"center\", style=\"min-width:45px; padding: 10px;\">\n", |
308 | | - " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.1.x/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
| 326 | + " <a target=\"_blank\" href=\"https://github.com/mlrun/demos/blob/1.3.x-latest/howto/spark/spark-operator.ipynb\"><img src=\"./assets/images/GitHub-Mark-32px.png\"/><br>View on GitHub</a>\n", |
309 | 327 | " </td>\n", |
310 | 328 | " <td>Demonstrates how to use <a target=\"_blank\" href=\"https://github.com/GoogleCloudPlatform/spark-on-k8s-operator\">Spark Operator</a> to run a Spark job over Kubernetes with MLRun.\n", |
311 | 329 | " </td>\n", |
|
407 | 425 | ] |
408 | 426 | }, |
409 | 427 | { |
| 428 | + "attachments": {}, |
410 | 429 | "cell_type": "markdown", |
411 | 430 | "metadata": {}, |
412 | 431 | "source": [ |
413 | 432 | "<a id=\"v3io-dir\"></a>\n", |
414 | 433 | "### The v3io Directory\n", |
415 | 434 | "\n", |
416 | | - "The **v3io** directory that you see in the file browser of the Jupyter UI displays the contents of the `v3io` data mount for browsing the platform data containers. For information about the platform's data containers and how to reference data in these containers, see [Data Containers](https://www.iguazio.com/docs/latest-release/data-layer/containers/)." |
| 435 | + "The **v3io** directory that you see in the file browser of the Jupyter UI displays the contents of the `v3io` data mount for browsing the platform data containers. For information about the platform's data containers and how to reference data in these containers, see [Data Containers](https://www.iguazio.com/docs/latest-release/services/data-layer/containers/)." |
417 | 436 | ] |
418 | 437 | }, |
419 | 438 | { |
|
443 | 462 | "name": "python", |
444 | 463 | "nbconvert_exporter": "python", |
445 | 464 | "pygments_lexer": "ipython3", |
446 | | - "version": "3.8.10" |
| 465 | + "version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]" |
447 | 466 | }, |
448 | 467 | "vscode": { |
449 | 468 | "interpreter": { |
|
0 commit comments