@@ -192,9 +192,6 @@ class definition for details.
192
192
T4_projector_top = left_projectors .get_projector (x , y , - 1 , 0 ).top
193
193
T4_projector_bottom = left_projectors .get_projector (x , y , 0 , 0 ).bottom
194
194
195
- # T4_projector_top = jnp.eye(9).reshape(1, 3, 3, 9)
196
- # T4_projector_bottom = jnp.eye(9).reshape(9, 1, 3, 3)
197
-
198
195
if (
199
196
working_tensor_obj .d > working_tensor_obj .chi
200
197
or working_tensor_obj .d > working_tensor_obj .D [0 ] ** 2
@@ -764,48 +761,6 @@ def do_left_absorption_split_transfer(
764
761
x , y , 0 , 0
765
762
).bottom_phys_bra
766
763
767
- # T4_ket_projector_top = jnp.eye(3).reshape(1, 3, 3)
768
- # T4_bra_projector_top = jnp.eye(9).reshape(3, 3, 9)
769
- # T4_ket_projector_bottom = jnp.eye(3).reshape(3, 1, 3)
770
- # T4_bra_projector_bottom = jnp.eye(9).reshape(9, 3, 3)
771
-
772
- # new_T4_tmp = apply_contraction_jitted(
773
- # "ctmrg_split_transfer_absorption_left_T4",
774
- # [working_tensor],
775
- # [working_tensor_obj],
776
- # [
777
- # T4_ket_projector_top,
778
- # T4_bra_projector_top,
779
- # T4_ket_projector_bottom,
780
- # T4_bra_projector_bottom,
781
- # ],
782
- # )
783
- #
784
- # # new_T4_tmp += new_T4_tmp.conj().transpose(0, 2, 1, 3)
785
- # # new_T4_tmp /= 2
786
- #
787
- # new_T4_tmp_list.append(_post_process_CTM_tensors(new_T4_tmp, config))
788
- #
789
- # new_T4_tmp_matrix = new_T4_tmp.reshape(
790
- # new_T4_tmp.shape[0] * new_T4_tmp.shape[1],
791
- # new_T4_tmp.shape[2] * new_T4_tmp.shape[3],
792
- # )
793
- # new_T4_bra, T4_S, new_T4_ket = gauge_fixed_svd(new_T4_tmp_matrix)
794
- #
795
- # new_T4_bra = new_T4_bra[:, : working_tensor_obj.interlayer_chi]
796
- # T4_S = jnp.sqrt(T4_S[: working_tensor_obj.interlayer_chi])
797
- # new_T4_ket = new_T4_ket[: working_tensor_obj.interlayer_chi, :]
798
- #
799
- # new_T4_bra = new_T4_bra * T4_S[jnp.newaxis, :]
800
- # new_T4_ket = T4_S[:, jnp.newaxis] * new_T4_ket
801
- #
802
- # new_T4_bra = new_T4_bra.reshape(
803
- # new_T4_tmp.shape[0], new_T4_tmp.shape[1], new_T4_bra.shape[1]
804
- # )
805
- # new_T4_ket = new_T4_ket.reshape(
806
- # new_T4_ket.shape[0], new_T4_tmp.shape[2], new_T4_tmp.shape[3]
807
- # )
808
-
809
764
new_T4_ket = apply_contraction_jitted (
810
765
"ctmrg_split_transfer_absorption_left_T4_ket" ,
811
766
[working_tensor ],
@@ -942,41 +897,6 @@ def do_right_absorption_split_transfer(
942
897
x , y , 0 , 0
943
898
).bottom_phys_bra
944
899
945
- # new_T2_tmp = apply_contraction_jitted(
946
- # "ctmrg_split_transfer_absorption_right_T2",
947
- # [working_tensor],
948
- # [working_tensor_obj],
949
- # [
950
- # T2_ket_projector_top,
951
- # T2_bra_projector_top,
952
- # T2_ket_projector_bottom,
953
- # T2_bra_projector_bottom,
954
- # ],
955
- # )
956
- #
957
- # # new_T2_tmp += new_T2_tmp.conj().transpose(0, 2, 1, 3)
958
- # # new_T2_tmp /= 2
959
- #
960
- # new_T2_tmp_matrix = new_T2_tmp.reshape(
961
- # new_T2_tmp.shape[0] * new_T2_tmp.shape[1],
962
- # new_T2_tmp.shape[2] * new_T2_tmp.shape[3],
963
- # )
964
- # new_T2_bra, T2_S, new_T2_ket = gauge_fixed_svd(new_T2_tmp_matrix)
965
- #
966
- # new_T2_bra = new_T2_bra[:, : working_tensor_obj.interlayer_chi]
967
- # T2_S = jnp.sqrt(T2_S[: working_tensor_obj.interlayer_chi])
968
- # new_T2_ket = new_T2_ket[: working_tensor_obj.interlayer_chi, :]
969
- #
970
- # new_T2_bra = new_T2_bra * T2_S[jnp.newaxis, :]
971
- # new_T2_ket = T2_S[:, jnp.newaxis] * new_T2_ket
972
- #
973
- # new_T2_bra = new_T2_bra.reshape(
974
- # new_T2_tmp.shape[0], new_T2_tmp.shape[1], new_T2_bra.shape[1]
975
- # )
976
- # new_T2_ket = new_T2_ket.reshape(
977
- # new_T2_ket.shape[0], new_T2_tmp.shape[2], new_T2_tmp.shape[3]
978
- # )
979
-
980
900
new_T2_ket = apply_contraction_jitted (
981
901
"ctmrg_split_transfer_absorption_right_T2_ket" ,
982
902
[working_tensor ],
@@ -1105,41 +1025,6 @@ def do_top_absorption_split_transfer(
1105
1025
x , y , 0 , 0
1106
1026
).right_phys_bra
1107
1027
1108
- # new_T1_tmp = apply_contraction_jitted(
1109
- # "ctmrg_split_transfer_absorption_top_T1",
1110
- # [working_tensor],
1111
- # [working_tensor_obj],
1112
- # [
1113
- # T1_ket_projector_left,
1114
- # T1_bra_projector_left,
1115
- # T1_ket_projector_right,
1116
- # T1_bra_projector_right,
1117
- # ],
1118
- # )
1119
- #
1120
- # # new_T1_tmp += new_T1_tmp.conj().transpose(0, 2, 1, 3)
1121
- # # new_T1_tmp /= 2
1122
- #
1123
- # new_T1_tmp_matrix = new_T1_tmp.reshape(
1124
- # new_T1_tmp.shape[0] * new_T1_tmp.shape[1],
1125
- # new_T1_tmp.shape[2] * new_T1_tmp.shape[3],
1126
- # )
1127
- # new_T1_ket, T1_S, new_T1_bra = gauge_fixed_svd(new_T1_tmp_matrix)
1128
- #
1129
- # new_T1_ket = new_T1_ket[:, : working_tensor_obj.interlayer_chi]
1130
- # T1_S = jnp.sqrt(T1_S[: working_tensor_obj.interlayer_chi])
1131
- # new_T1_bra = new_T1_bra[: working_tensor_obj.interlayer_chi, :]
1132
- #
1133
- # new_T1_ket = new_T1_ket * T1_S[jnp.newaxis, :]
1134
- # new_T1_bra = T1_S[:, jnp.newaxis] * new_T1_bra
1135
- #
1136
- # new_T1_ket = new_T1_ket.reshape(
1137
- # new_T1_tmp.shape[0], new_T1_tmp.shape[1], new_T1_ket.shape[1]
1138
- # )
1139
- # new_T1_bra = new_T1_bra.reshape(
1140
- # new_T1_bra.shape[0], new_T1_tmp.shape[2], new_T1_tmp.shape[3]
1141
- # )
1142
-
1143
1028
new_T1_ket = apply_contraction_jitted (
1144
1029
"ctmrg_split_transfer_absorption_top_T1_ket" ,
1145
1030
[working_tensor ],
@@ -1278,41 +1163,6 @@ def do_bottom_absorption_split_transfer(
1278
1163
x , y , 0 , 0
1279
1164
).right_phys_bra
1280
1165
1281
- # new_T3_tmp = apply_contraction_jitted(
1282
- # "ctmrg_split_transfer_absorption_bottom_T3",
1283
- # [working_tensor],
1284
- # [working_tensor_obj],
1285
- # [
1286
- # T3_ket_projector_left,
1287
- # T3_bra_projector_left,
1288
- # T3_ket_projector_right,
1289
- # T3_bra_projector_right,
1290
- # ],
1291
- # )
1292
- #
1293
- # # new_T3_tmp += new_T3_tmp.conj().transpose(0, 2, 1, 3)
1294
- # # new_T3_tmp /= 2
1295
- #
1296
- # new_T3_tmp_matrix = new_T3_tmp.reshape(
1297
- # new_T3_tmp.shape[0] * new_T3_tmp.shape[1],
1298
- # new_T3_tmp.shape[2] * new_T3_tmp.shape[3],
1299
- # )
1300
- # new_T3_ket, T3_S, new_T3_bra = gauge_fixed_svd(new_T3_tmp_matrix)
1301
- #
1302
- # new_T3_ket = new_T3_ket[:, : working_tensor_obj.interlayer_chi]
1303
- # T3_S = jnp.sqrt(T3_S[: working_tensor_obj.interlayer_chi])
1304
- # new_T3_bra = new_T3_bra[: working_tensor_obj.interlayer_chi, :]
1305
- #
1306
- # new_T3_ket = new_T3_ket * T3_S[jnp.newaxis, :]
1307
- # new_T3_bra = T3_S[:, jnp.newaxis] * new_T3_bra
1308
- #
1309
- # new_T3_ket = new_T3_ket.reshape(
1310
- # new_T3_tmp.shape[0], new_T3_tmp.shape[1], new_T3_ket.shape[1]
1311
- # )
1312
- # new_T3_bra = new_T3_bra.reshape(
1313
- # new_T3_bra.shape[0], new_T3_tmp.shape[2], new_T3_tmp.shape[3]
1314
- # )
1315
-
1316
1166
new_T3_ket = apply_contraction_jitted (
1317
1167
"ctmrg_split_transfer_absorption_bottom_T3_ket" ,
1318
1168
[working_tensor ],
0 commit comments