|
9 | 9 |
|
10 | 10 |
|
11 | 11 | def calculate_correlation_length(unitcell: PEPS_Unit_Cell):
|
12 |
| - use_full = True |
13 |
| - |
14 |
| - full_transfer_right = None |
15 |
| - full_transfer_bottom = None |
16 |
| - |
17 |
| - try: |
| 12 | + initial_vector_left = apply_contraction_jitted( |
| 13 | + "corrlength_vector_left", |
| 14 | + (unitcell[0, 0][0][0].tensor,), |
| 15 | + (unitcell[0, 0][0][0],), |
| 16 | + (), |
| 17 | + ) |
| 18 | + initial_vector_left = initial_vector_left.reshape(-1) |
| 19 | + |
| 20 | + initial_vector_top = apply_contraction_jitted( |
| 21 | + "corrlength_vector_top", |
| 22 | + (unitcell[0, 0][0][0].tensor,), |
| 23 | + (unitcell[0, 0][0][0],), |
| 24 | + (), |
| 25 | + ) |
| 26 | + initial_vector_top = initial_vector_top.reshape(-1) |
| 27 | + |
| 28 | + def left_matvec(vec): |
| 29 | + vec = jnp.asarray(vec) |
18 | 30 | for _, view in unitcell.iter_one_row(0):
|
19 |
| - transfer_right = apply_contraction_jitted( |
20 |
| - "corrlength_transfer_right", |
| 31 | + if vec.ndim != 4: |
| 32 | + vec = vec.reshape( |
| 33 | + view[0, 0][0][0].T1.shape[0], |
| 34 | + view[0, 0][0][0].tensor.shape[0], |
| 35 | + view[0, 0][0][0].tensor.shape[0], |
| 36 | + view[0, 0][0][0].T3.shape[0], |
| 37 | + ) |
| 38 | + vec = apply_contraction_jitted( |
| 39 | + "corrlength_absorb_one_column", |
21 | 40 | (view[0, 0][0][0].tensor,),
|
22 | 41 | (view[0, 0][0][0],),
|
23 |
| - (), |
24 |
| - ) |
25 |
| - transfer_right = transfer_right.reshape( |
26 |
| - np.prod(transfer_right.shape[:4]), np.prod(transfer_right.shape[4:]) |
| 42 | + (vec,), |
27 | 43 | )
|
| 44 | + return vec.reshape(-1) |
| 45 | + |
| 46 | + left_lin_op = LinearOperator( |
| 47 | + (initial_vector_left.shape[0], initial_vector_left.shape[0]), |
| 48 | + matvec=left_matvec, |
| 49 | + ) |
| 50 | + |
| 51 | + eig_left, eigvec_left = eigs(left_lin_op, k=5, v0=initial_vector_left, which="LM") |
28 | 52 |
|
29 |
| - if full_transfer_right is None: |
30 |
| - full_transfer_right = transfer_right |
31 |
| - else: |
32 |
| - full_transfer_right = full_transfer_right @ transfer_right |
| 53 | + eig_left = eig_left[np.argsort(np.abs(eig_left))[::-1]] |
| 54 | + eig_left /= np.abs(eig_left[0]) |
33 | 55 |
|
34 |
| - initial_vector_right = apply_contraction_jitted( |
35 |
| - "corrlength_vector_right", |
36 |
| - (unitcell[0, -1][0][0].tensor,), |
37 |
| - (view[0, -1][0][0],), |
38 |
| - (), |
39 |
| - ) |
40 |
| - initial_vector_right = initial_vector_right.reshape(-1) |
| 56 | + corr_len_left = -1 / np.log(np.abs(eig_left[1])) |
41 | 57 |
|
| 58 | + def top_matvec(vec): |
| 59 | + vec = jnp.asarray(vec) |
42 | 60 | for _, view in unitcell.iter_one_column(0):
|
43 |
| - transfer_bottom = apply_contraction_jitted( |
44 |
| - "corrlength_transfer_bottom", |
| 61 | + if vec.ndim != 4: |
| 62 | + vec = vec.reshape( |
| 63 | + view[0, 0][0][0].T4.shape[3], |
| 64 | + view[0, 0][0][0].tensor.shape[4], |
| 65 | + view[0, 0][0][0].tensor.shape[4], |
| 66 | + view[0, 0][0][0].T2.shape[3], |
| 67 | + ) |
| 68 | + vec = apply_contraction_jitted( |
| 69 | + "corrlength_absorb_one_row", |
45 | 70 | (view[0, 0][0][0].tensor,),
|
46 | 71 | (view[0, 0][0][0],),
|
47 |
| - (), |
48 |
| - ) |
49 |
| - transfer_bottom = transfer_bottom.reshape( |
50 |
| - np.prod(transfer_bottom.shape[:4]), np.prod(transfer_bottom.shape[4:]) |
| 72 | + (vec,), |
51 | 73 | )
|
| 74 | + return vec.reshape(-1) |
52 | 75 |
|
53 |
| - if full_transfer_bottom is None: |
54 |
| - full_transfer_bottom = transfer_bottom |
55 |
| - else: |
56 |
| - full_transfer_bottom = full_transfer_bottom @ transfer_bottom |
57 |
| - |
58 |
| - initial_vector_bottom = apply_contraction_jitted( |
59 |
| - "corrlength_vector_bottom", |
60 |
| - (unitcell[-1, 0][0][0].tensor,), |
61 |
| - (view[-1, 0][0][0],), |
62 |
| - (), |
63 |
| - ) |
64 |
| - initial_vector_bottom = initial_vector_bottom.reshape(-1) |
65 |
| - |
66 |
| - eig_right, eigvec_right = eigs( |
67 |
| - np.asarray(full_transfer_right), |
68 |
| - k=5, |
69 |
| - v0=np.asarray(initial_vector_right), |
70 |
| - which="LM", |
71 |
| - ) |
72 |
| - |
73 |
| - eig_right = np.abs(eig_right) |
74 |
| - eig_right /= eig_right[0] |
75 |
| - |
76 |
| - corr_len_right = -1 / np.log(eig_right[1]) |
77 |
| - |
78 |
| - eig_bottom, eigvec_bottom = eigs( |
79 |
| - np.asarray(full_transfer_bottom), |
80 |
| - k=5, |
81 |
| - v0=np.asarray(initial_vector_bottom), |
82 |
| - which="LM", |
83 |
| - ) |
84 |
| - |
85 |
| - eig_bottom = np.abs(eig_bottom) |
86 |
| - eig_bottom /= eig_bottom[0] |
87 |
| - |
88 |
| - corr_len_bottom = -1 / np.log(eig_bottom[1]) |
89 |
| - |
90 |
| - return (corr_len_right, eig_right), (corr_len_bottom, eig_bottom) |
91 |
| - except XlaRuntimeError: |
92 |
| - initial_vector_left = apply_contraction_jitted( |
93 |
| - "corrlength_vector_left", |
94 |
| - (unitcell[0, 0][0][0].tensor,), |
95 |
| - (view[0, 0][0][0],), |
96 |
| - (), |
97 |
| - ) |
98 |
| - initial_vector_left = initial_vector_left.reshape(-1) |
99 |
| - |
100 |
| - initial_vector_top = apply_contraction_jitted( |
101 |
| - "corrlength_vector_top", |
102 |
| - (unitcell[0, 0][0][0].tensor,), |
103 |
| - (view[0, 0][0][0],), |
104 |
| - (), |
105 |
| - ) |
106 |
| - initial_vector_top = initial_vector_top.reshape(-1) |
107 |
| - |
108 |
| - def left_matvec(vec): |
109 |
| - vec = jnp.asarray(vec) |
110 |
| - for _, view in unitcell.iter_one_row(0): |
111 |
| - if vec.ndim != 4: |
112 |
| - vec = vec.reshape( |
113 |
| - view[0, 0][0][0].T1.shape[0], |
114 |
| - view[0, 0][0][0].tensor.shape[0], |
115 |
| - view[0, 0][0][0].tensor.shape[0], |
116 |
| - view[0, 0][0][0].T3.shape[0], |
117 |
| - ) |
118 |
| - vec = apply_contraction_jitted( |
119 |
| - "corrlength_absorb_one_column", |
120 |
| - (view[0, 0][0][0].tensor,), |
121 |
| - (view[0, 0][0][0],), |
122 |
| - (vec,), |
123 |
| - ) |
124 |
| - return vec.reshape(-1) |
125 |
| - |
126 |
| - left_lin_op = LinearOperator( |
127 |
| - (initial_vector_left.shape[0], initial_vector_left.shape[0]), |
128 |
| - matvec=left_matvec, |
129 |
| - ) |
130 |
| - |
131 |
| - eig_left, eigvec_left = eigs( |
132 |
| - left_lin_op, k=5, v0=initial_vector_left, which="LM" |
133 |
| - ) |
134 |
| - |
135 |
| - eig_left = np.abs(eig_left) |
136 |
| - eig_left /= eig_left[0] |
137 |
| - |
138 |
| - corr_len_left = -1 / np.log(eig_left[1]) |
139 |
| - |
140 |
| - def top_matvec(vec): |
141 |
| - vec = jnp.asarray(vec) |
142 |
| - for _, view in unitcell.iter_one_row(0): |
143 |
| - if vec.ndim != 4: |
144 |
| - vec = vec.reshape( |
145 |
| - view[0, 0][0][0].T4.shape[3], |
146 |
| - view[0, 0][0][0].tensor.shape[4], |
147 |
| - view[0, 0][0][0].tensor.shape[4], |
148 |
| - view[0, 0][0][0].T2.shape[3], |
149 |
| - ) |
150 |
| - vec = apply_contraction_jitted( |
151 |
| - "corrlength_absorb_one_row", |
152 |
| - (view[0, 0][0][0].tensor,), |
153 |
| - (view[0, 0][0][0],), |
154 |
| - (vec,), |
155 |
| - ) |
156 |
| - return vec.reshape(-1) |
157 |
| - |
158 |
| - top_lin_op = LinearOperator( |
159 |
| - (initial_vector_top.shape[0], initial_vector_top.shape[0]), |
160 |
| - matvec=top_matvec, |
161 |
| - ) |
| 76 | + top_lin_op = LinearOperator( |
| 77 | + (initial_vector_top.shape[0], initial_vector_top.shape[0]), |
| 78 | + matvec=top_matvec, |
| 79 | + ) |
162 | 80 |
|
163 |
| - eig_top, eigvec_top = eigs(top_lin_op, k=5, v0=initial_vector_top, which="LM") |
| 81 | + eig_top, eigvec_top = eigs(top_lin_op, k=5, v0=initial_vector_top, which="LM") |
164 | 82 |
|
165 |
| - eig_top = np.abs(eig_top) |
166 |
| - eig_top /= eig_top[0] |
| 83 | + eig_top = eig_top[np.argsort(np.abs(eig_top))[::-1]] |
| 84 | + eig_top /= np.abs(eig_top[0]) |
167 | 85 |
|
168 |
| - corr_len_top = -1 / np.log(eig_top[1]) |
| 86 | + corr_len_top = -1 / np.log(np.abs(eig_top[1])) |
169 | 87 |
|
170 |
| - return (corr_len_left, eig_left), (corr_len_top, eig_top) |
| 88 | + return (corr_len_left, eig_left), (corr_len_top, eig_top) |
0 commit comments