-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathroute.ts
394 lines (347 loc) · 11.5 KB
/
route.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import {
type Message,
createDataStreamResponse,
formatDataStreamPart,
smoothStream,
streamText
} from 'ai'
import { ChatOpenAI } from '@langchain/openai'
import { LangChainAdapter } from 'ai'
import { auth } from '@/app/(auth)/auth'
import { myProvider } from '@/lib/ai/models'
import { systemPrompt } from '@/lib/ai/prompts'
import {
deleteChatById,
getChatById,
saveChat,
saveMessages
} from '@/lib/db/queries'
import {
generateUUID,
getMostRecentUserMessage,
sanitizeResponseMessages
} from '@/lib/utils'
import { generateTitleFromUserMessage } from '../../actions'
import { createDocument } from '@/lib/ai/tools/create-document'
import { updateDocument } from '@/lib/ai/tools/update-document'
import { requestSuggestions } from '@/lib/ai/tools/request-suggestions'
import { getWeather } from '@/lib/ai/tools/get-weather'
import { m } from 'framer-motion'
import { Client } from '@langchain/langgraph-sdk'
import { console } from 'inspector'
export const maxDuration = 60
type LangGraphStreamEvent = {
event: string
data: any
}
// For simplicity we assume each message chunk is an object with a 'content' property (a string)
type LangGraphAIMessageChunk = {
content: string
}
// --- 1. Provided Function: Delta Messages Generator ---
async function* deltaMessagesGenerator(
streamResponse: AsyncGenerator<{ event: string; data: any }, any, any>
): AsyncGenerator<string, void, unknown> {
let lastOutput = '' // holds the last full accumulated message
for await (const message of streamResponse) {
// Process only non-complete messages
if (message.event !== 'messages/complete') {
const msg = message.data?.[0]
if (msg?.content) {
const current = msg.content
// Calculate delta (new part of the message)
const delta = current.substring(lastOutput.length)
// Update the last seen full text
lastOutput = current
if (delta) {
// Format the delta with text code 0 (using your helper)
const formatted = formatDataStreamPart('text', delta)
console.log('Delta message:', formatted)
yield formatted
}
}
}
}
}
interface fullDataStreamGeneratorProps {
streamResponse: AsyncGenerator<LangGraphStreamEvent, any, any>
messageId?: string
}
// --- 2. Full Data Stream Generator ---
// This async generator wraps deltaMessagesGenerator and emits the additional codes.
async function* fullDataStreamGenerator({
streamResponse,
messageId = generateUUID()
}: fullDataStreamGeneratorProps): AsyncGenerator<string, void, unknown> {
// Yield start event (code "f:").
const startEvent = formatDataStreamPart('start_step', {
messageId
})
yield startEvent
// Yield each delta update from the API.
for await (const delta of deltaMessagesGenerator(streamResponse)) {
yield delta
}
// Yield finish step event (code "e:").
const finishStepEvent = formatDataStreamPart('finish_step', {
finishReason: 'stop',
usage: { promptTokens: 55, completionTokens: 20 },
isContinued: false
})
yield finishStepEvent
// Yield finish message event (code "d:").
const finishMessageEvent = formatDataStreamPart('finish_message', {
finishReason: 'stop',
usage: { promptTokens: 55, completionTokens: 20 }
})
yield finishMessageEvent
}
// --- 3. Convert an Async Generator into a ReadableStream ---
function asyncGeneratorToReadableStream(
generator: AsyncGenerator<string, any, any>
): ReadableStream<string> {
return new ReadableStream<string>({
async pull(controller) {
const { done, value } = await generator.next()
if (done) {
controller.close()
} else {
controller.enqueue(value)
}
},
async cancel(reason) {
if (generator.return) {
await generator.return(reason)
}
}
})
}
function prepareResponseHeaders(
headers: HeadersInit | undefined,
{
contentType,
dataStreamVersion
}: { contentType: string; dataStreamVersion?: 'v1' | undefined }
) {
const responseHeaders = new Headers(headers ?? {})
if (!responseHeaders.has('Content-Type')) {
responseHeaders.set('Content-Type', contentType)
}
if (dataStreamVersion !== undefined) {
responseHeaders.set('X-Vercel-AI-Data-Stream', dataStreamVersion)
}
return responseHeaders
}
export async function POST(request: Request) {
const {
id,
messages,
selectedChatModel
}: { id: string; messages: Array<Message>; selectedChatModel: string } =
await request.json()
const session = await auth()
if (!session || !session.user || !session.user.id) {
return new Response('Unauthorized', { status: 401 })
}
const userMessage = getMostRecentUserMessage(messages)
console.log('User message:', userMessage)
console.log('Messages:', messages)
console.log('id', id)
if (!userMessage) {
return new Response('No user message found', { status: 400 })
}
const chat = await getChatById({ id })
if (!chat) {
const title = await generateTitleFromUserMessage({ message: userMessage })
await saveChat({ id, userId: session.user.id, title })
}
await saveMessages({
messages: [{ ...userMessage, createdAt: new Date(), chatId: id }]
})
const result = streamText({
model: myProvider.languageModel(selectedChatModel),
messages
})
return result.toDataStreamResponse()
// const llm = new ChatOpenAI({
// apiKey: process.env.OPENAI_API_KEY,
// modelName: 'gpt-4o-mini' // context window 128k
// })
// const formattedMessages = messages.map((message) => ({
// ...message,
// type: message.role // assuming 'role' is the equivalent of 'type'
// }))
// const result = await llm.stream(formattedMessages)
// console.log('\nGenerating stream: ', result, '\n')
// return LangChainAdapter.toDataStreamResponse(result)
// return createDataStreamResponse({
// execute: (dataStream) => {
// const result = streamText({
// model: myProvider.languageModel(selectedChatModel),
// system: systemPrompt({ selectedChatModel }),
// messages,
// maxSteps: 5,
// experimental_activeTools:
// selectedChatModel === 'chat-model-reasoning'
// ? []
// : [
// 'getWeather',
// 'createDocument',
// 'updateDocument',
// 'requestSuggestions',
// ],
// experimental_transform: smoothStream({ chunking: 'word' }),
// experimental_generateMessageId: generateUUID,
// tools: {
// getWeather,
// createDocument: createDocument({ session, dataStream }),
// updateDocument: updateDocument({ session, dataStream }),
// requestSuggestions: requestSuggestions({
// session,
// dataStream,
// }),
// },
// onFinish: async ({ response, reasoning }) => {
// if (session.user?.id) {
// try {
// const sanitizedResponseMessages = sanitizeResponseMessages({
// messages: response.messages,
// reasoning,
// });
// await saveMessages({
// messages: sanitizedResponseMessages.map((message) => {
// return {
// id: message.id,
// chatId: id,
// role: message.role,
// content: message.content,
// createdAt: new Date(),
// };
// }),
// });
// } catch (error) {
// console.error('Failed to save chat');
// }
// }
// },
// experimental_telemetry: {
// isEnabled: true,
// functionId: 'stream-text',
// },
// });
// result.mergeIntoDataStream(dataStream, {
// sendReasoning: true,
// });
// },
// onError: () => {
// return 'Oops, an error occured!';
// },
// });
// console.log('Starting the model...')
// const client = new Client({ apiUrl: 'http://localhost:2024' })
// console.log('Client created...')
// // get default assistant
// const assistants = await client.assistants.search()
// //console.log(assistants)
// let assistant = assistants.find((a) => a.graph_id === 'researcher')
// if (!assistant) {
// assistant = await client.assistants.create({ graphId: 'researcher' })
// // throw new Error('No assistant found')
// }
// // create thread
// const thread = await client.threads.create()
// console.log('Thread: ', thread)
// const input = {
// messages: [userMessage]
// }
// const streamResponse = client.runs.stream(
// thread['thread_id'],
// assistant['assistant_id'],
// {
// input,
// streamMode: 'messages'
// }
// )
// console.log('\nStreaming response...\n\n')
// // Create our full data stream generator (start, delta, finish events).
// const fullGenerator = fullDataStreamGenerator({
// streamResponse
// })
// // Convert it into a ReadableStream of strings.
// const readableStream = asyncGeneratorToReadableStream(fullGenerator)
// // Pipe through a TextEncoderStream so the body is binary.
// const responseStream = readableStream.pipeThrough(new TextEncoderStream())
// // Create the HTTP Response.
// const response = new Response(responseStream, {
// status: 200,
// statusText: 'OK',
// headers: prepareResponseHeaders(
// {},
// {
// contentType: 'text/plain; charset=utf-8',
// dataStreamVersion: 'v1'
// }
// )
// })
// return response
// if (!response.body) {
// throw new Error('Response body is null')
// }
// const reader = response.body.getReader()
// const decoder = new TextDecoder('utf-8')
// let result = ''
// while (true) {
// const { done, value } = await reader.read()
// if (done) break
// const textChunk = decoder.decode(value, { stream: true })
// console.log('Received chunk:', textChunk)
// result += textChunk
// }
// result += decoder.decode() // flush remaining bytes
// console.log('Full response:', result)
}
export async function DELETE(request: Request) {
const { searchParams } = new URL(request.url)
const id = searchParams.get('id')
if (!id) {
return new Response('Not Found', { status: 404 })
}
const session = await auth()
if (!session || !session.user) {
return new Response('Unauthorized', { status: 401 })
}
try {
const chat = await getChatById({ id })
if (chat.userId !== session.user.id) {
return new Response('Unauthorized', { status: 401 })
}
await deleteChatById({ id })
return new Response('Chat deleted', { status: 200 })
} catch (error) {
return new Response('An error occurred while processing your request', {
status: 500
})
}
}
// const result = streamText({
// model: myProvider.languageModel(selectedChatModel),
// messages
// })
// const response = result.toDataStreamResponse()
// if (!response.body) {
// throw new Error('Response body is null')
// }
// const reader = response.body.getReader()
// const decoder = new TextDecoder('utf-8')
// let fullText = ''
// while (true) {
// const { done, value } = await reader.read()
// if (done) break
// const chunkText = decoder.decode(value, { stream: true })
// console.log('Received chunk:', chunkText)
// fullText += chunkText
// }
// fullText += decoder.decode() // flush remaining bytes
// console.log('Full response stream:', fullText)
// return response
// }