-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_dataset.py
50 lines (43 loc) · 1.43 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#saves to a csv file
import cv2
from darkflow.net.build import TFNet
import numpy as np
import time
from datetime import datetime
options = {
'model': '../cfg/yolo.cfg',
'load': '../bin/yolo.weights',
'threshold': 0.2,
'gpu': 1.0
}
tfnet = TFNet(options)
colors = [tuple(255 * np.random.rand(3)) for _ in range(10)]
capture = cv2.VideoCapture(0)
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 416)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 416)
while True:
stime = time.time()
ret, frame = capture.read()
results = tfnet.return_predict(frame)
if ret:
for color, result in zip(colors, results):
tl = (result['topleft']['x'], result['topleft']['y'])
br = (result['bottomright']['x'], result['bottomright']['y'])
label = result['label']
print(label)
print('\a')
abc = str(datetime.now())
f = open('out.csv', 'a+')
f.write(label+' '+abc)
f.write('\n')
confidence = result['confidence']
text = '{}: {:.0f}%'.format(label, confidence * 100)
frame = cv2.rectangle(frame, tl, br, color, 5)
frame = cv2.putText(
frame, text, tl, cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
cv2.imshow('frame', frame)
print('FPS {:.1f}'.format(1 / (time.time() - stime)))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()