-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
277 lines (232 loc) · 9.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import tensorflow as tf
import numpy as np
import tensorflow_addons as tfa
class UnitNormLayer(tf.keras.layers.Layer):
'''Normalize vectors (euclidean norm) in batch to unit hypersphere.
'''
def __init__(self):
super(UnitNormLayer, self).__init__()
def call(self, input_tensor):
norm = tf.norm(input_tensor, axis=1)
return input_tensor / tf.reshape(norm, [-1, 1])
class DenseLeakyReluLayer(tf.keras.layers.Layer):
'''A dense layer followed by a LeakyRelu layer
'''
def __init__(self, n, alpha=0.3):
super(DenseLeakyReluLayer, self).__init__()
self.dense = tf.keras.layers.Dense(n, activation=None)
self.lrelu = tf.keras.layers.LeakyReLU(alpha=alpha)
def call(self, input_tensor):
x = self.dense(input_tensor)
return self.lrelu(x)
class Encoder(tf.keras.Model):
'''An encoder network, E(·), which maps an augmented image x to a representation vector, r = E(x) ∈ R^{DE}
'''
def __init__(self, normalize=True, activation='relu'):
super(Encoder, self).__init__(name='')
if activation == 'leaky_relu':
self.hidden1 = DenseLeakyReluLayer(256)
self.hidden2 = DenseLeakyReluLayer(256)
else:
self.hidden1 = tf.keras.layers.Dense(256, activation=activation)
self.hidden2 = tf.keras.layers.Dense(256, activation=activation)
self.normalize = normalize
if self.normalize:
self.norm = UnitNormLayer()
def call(self, input_tensor, training=False):
x = self.hidden1(input_tensor, training=training)
x = self.hidden2(x, training=training)
if self.normalize:
x = self.norm(x)
return x
class Projector(tf.keras.Model):
'''
A projection network, P(·), which maps the normalized representation vector r into a vector z = P(r) ∈ R^{DP}
suitable for computation of the contrastive loss.
'''
def __init__(self, n, normalize=True, activation='relu'):
super(Projector, self).__init__(name='')
if activation == 'leaky_relu':
self.dense = DenseLeakyReluLayer(256)
self.dense2 = DenseLeakyReluLayer(256)
else:
self.dense = tf.keras.layers.Dense(256, activation=activation)
self.dense2 = tf.keras.layers.Dense(256, activation=activation)
self.normalize = normalize
if self.normalize:
self.norm = UnitNormLayer()
def call(self, input_tensor, training=False):
x = self.dense(input_tensor, training=training)
x = self.dense2(x, training=training)
if self.normalize:
x = self.norm(x)
return x
class SoftmaxPred(tf.keras.Model):
'''For stage 2, simply a softmax on top of the Encoder.
'''
def __init__(self, num_classes=10):
super(SoftmaxPred, self).__init__(name='')
self.dense = tf.keras.layers.Dense(num_classes, activation='softmax')
def call(self, input_tensor, training=False):
return self.dense(input_tensor, training=training)
class MLP(tf.keras.Model):
'''A simple baseline MLP with the same architecture to Encoder + Softmax/Regression output.
'''
def __init__(self, num_classes=10, normalize=True, regress=False, activation='relu'):
super(MLP, self).__init__(name='')
if activation == 'leaky_relu':
self.hidden1 = DenseLeakyReluLayer(256)
self.hidden2 = DenseLeakyReluLayer(256)
else:
self.hidden1 = tf.keras.layers.Dense(256, activation=activation)
self.hidden2 = tf.keras.layers.Dense(256, activation=activation)
self.normalize = normalize
if self.normalize:
self.norm = UnitNormLayer()
if not regress:
self.output_layer = tf.keras.layers.Dense(
num_classes, activation='softmax')
else:
self.output_layer = tf.keras.layers.Dense(1)
def call(self, input_tensor, training=False):
x = self.hidden1(input_tensor, training=training)
x = self.hidden2(x, training=training)
if self.normalize:
x = self.norm(x)
preds = self.output_layer(x, training=training)
return preds
def get_last_hidden(self, input_tensor):
'''Get the last hidden layer before prediction.
'''
x = self.hidden1(input_tensor, training=False)
x = self.hidden2(x, training=False)
if self.normalize:
x = self.norm(x)
return x
def pdist_euclidean(A):
# Euclidean pdist
# https://stackoverflow.com/questions/37009647/compute-pairwise-distance-in-a-batch-without-replicating-tensor-in-tensorflow
r = tf.reduce_sum(A*A, 1)
# turn r into column vector
r = tf.reshape(r, [-1, 1])
D = r - 2*tf.matmul(A, tf.transpose(A)) + tf.transpose(r)
return tf.sqrt(D)
def square_to_vec(D):
'''Convert a squared form pdist matrix to vector form.
'''
n = D.shape[0]
triu_idx = np.triu_indices(n, k=1)
d_vec = tf.gather_nd(D, list(zip(triu_idx[0], triu_idx[1])))
return d_vec
def get_contrast_batch_labels(y):
'''
Make contrast labels by taking all the pairwise in y
y: tensor with shape: (batch_size, )
returns:
tensor with shape: (batch_size * (batch_size-1) // 2, )
'''
y_col_vec = tf.reshape(tf.cast(y, tf.float32), [-1, 1])
D_y = pdist_euclidean(y_col_vec)
d_y = square_to_vec(D_y)
y_contrasts = tf.cast(d_y == 0, tf.int32)
return y_contrasts
def get_contrast_batch_labels_regression(y):
'''
Make contrast labels for regression by taking all the pairwise in y
y: tensor with shape: (batch_size, )
returns:
tensor with shape: (batch_size * (batch_size-1) // 2, )
'''
raise NotImplementedError
def max_margin_contrastive_loss(z, y, margin=1.0, metric='euclidean'):
'''
Wrapper for the maximum margin contrastive loss (Hadsell et al. 2006)
`tfa.losses.contrastive_loss`
Args:
z: hidden vector of shape [bsz, n_features].
y: ground truth of shape [bsz].
metric: one of ('euclidean', 'cosine')
'''
# compute pair-wise distance matrix
if metric == 'euclidean':
D = pdist_euclidean(z)
elif metric == 'cosine':
D = 1 - tf.matmul(z, z, transpose_a=False, transpose_b=True)
# convert squareform matrix to vector form
d_vec = square_to_vec(D)
# make contrastive labels
y_contrasts = get_contrast_batch_labels(y)
loss = tfa.losses.contrastive_loss(y_contrasts, d_vec, margin=margin)
# exploding/varnishing gradients on large batch?
return tf.reduce_mean(loss)
def multiclass_npairs_loss(z, y):
'''
Wrapper for the multiclass N-pair loss (Sohn 2016)
`tfa.losses.npairs_loss`
Args:
z: hidden vector of shape [bsz, n_features].
y: ground truth of shape [bsz].
'''
# cosine similarity matrix
S = tf.matmul(z, z, transpose_a=False, transpose_b=True)
loss = tfa.losses.npairs_loss(y, S)
return loss
def triplet_loss(z, y, margin=1.0, kind='hard'):
'''
Wrapper for the triplet losses
`tfa.losses.triplet_hard_loss` and `tfa.losses.triplet_semihard_loss`
Args:
z: hidden vector of shape [bsz, n_features], assumes it is l2-normalized.
y: ground truth of shape [bsz].
'''
if kind == 'hard':
loss = tfa.losses.triplet_hard_loss(y, z, margin=margin, soft=False)
elif kind == 'soft':
loss = tfa.losses.triplet_hard_loss(y, z, margin=margin, soft=True)
elif kind == 'semihard':
loss = tfa.losses.triplet_semihard_loss(y, z, margin=margin)
return loss
def supervised_nt_xent_loss(z, y, temperature=0.5, base_temperature=0.07):
'''
Supervised normalized temperature-scaled cross entropy loss.
A variant of Multi-class N-pair Loss from (Sohn 2016)
Later used in SimCLR (Chen et al. 2020, Khosla et al. 2020).
Implementation modified from:
- https://github.com/google-research/simclr/blob/master/objective.py
- https://github.com/HobbitLong/SupContrast/blob/master/losses.py
Args:
z: hidden vector of shape [bsz, n_features].
y: ground truth of shape [bsz].
'''
batch_size = tf.shape(z)[0]
contrast_count = 1
anchor_count = contrast_count
y = tf.expand_dims(y, -1)
# mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
# has the same class as sample i. Can be asymmetric.
mask = tf.cast(tf.equal(y, tf.transpose(y)), tf.float32)
anchor_dot_contrast = tf.divide(
tf.matmul(z, tf.transpose(z)),
temperature
)
# # for numerical stability
logits_max = tf.reduce_max(anchor_dot_contrast, axis=1, keepdims=True)
logits = anchor_dot_contrast - logits_max
# # tile mask
logits_mask = tf.ones_like(mask) - tf.eye(batch_size)
mask = mask * logits_mask
# compute log_prob
exp_logits = tf.exp(logits) * logits_mask
log_prob = logits - \
tf.math.log(tf.reduce_sum(exp_logits, axis=1, keepdims=True))
# compute mean of log-likelihood over positive
# this may introduce NaNs due to zero division,
# when a class only has one example in the batch
mask_sum = tf.reduce_sum(mask, axis=1)
mean_log_prob_pos = tf.reduce_sum(
mask * log_prob, axis=1)[mask_sum > 0] / mask_sum[mask_sum > 0]
# loss
loss = -(temperature / base_temperature) * mean_log_prob_pos
# loss = tf.reduce_mean(tf.reshape(loss, [anchor_count, batch_size]))
loss = tf.reduce_mean(loss)
return loss