- Setup environment.
- Download COCO 2014 train images, 2014 val images, 2015 test images, annotations (train, val), and questions (train, val, test), then organize the dataset as following structure:
/path/to/your_data/
train2014/
COCO_train2014_000000000009.jpg
...
val2014/
COCO_val2014_000000000042.jpg
...
test2015/
COCO_test2015_000000000001.jpg
...
vqa/
v2_OpenEnded_mscoco_train2014_questions.json
v2_OpenEnded_mscoco_val2014_questions.json
v2_OpenEnded_mscoco_test2015_questions.json
v2_OpenEnded_mscoco_test-dev2015_questions.json
v2_mscoco_train2014_annotations.json
v2_mscoco_val2014_annotations.json
We then generate the index json files using the following command. beit3.spm is the sentencepiece model used for tokenizing texts.
from datasets import VQAv2Dataset
from transformers import XLMRobertaTokenizer
tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")
VQAv2Dataset.make_dataset_index(
data_path="/path/to/your_data",
tokenizer=tokenizer,
annotation_data_path="/path/to/your_data/vqa",
)
The BEiT-3 base model can be finetuned on VQAv2 using 8 V100-32GB:
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
--model beit3_base_patch16_480 \
--input_size 480 \
--task vqav2 \
--batch_size 16 \
--layer_decay 1.0 \
--lr 3e-5 \
--update_freq 1 \
--randaug \
--epochs 10 \
--warmup_epochs 1 \
--drop_path 0.1 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_base_patch16_224.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_model \
--log_dir /path/to/save/your_model/log \
--weight_decay 0.01 \
--seed 42 \
--save_ckpt_freq 5 \
--task_head_lr_weight 20 \
--opt_betas 0.9 0.98 \
--enable_deepspeed
--batch_size
: batch size per GPU. Effective batch size =number of GPUs
*--batch_size
*--update_freq
. So in the above example, the effective batch size is8*16 = 128
.--finetune
: weight path of your pretrained models; please download the pretrained model weights in README.md--enable_deepspeed
: optional. If you use apex, please enable deepspeed.
The BEiT-3 large model can be finetuned on VQAv2 using 8 V100-32GB:
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
--model beit3_large_patch16_480 \
--input_size 480 \
--task vqav2 \
--batch_size 16 \
--layer_decay 1.0 \
--lr 2e-5 \
--update_freq 1 \
--randaug \
--epochs 10 \
--warmup_epochs 1 \
--drop_path 0.15 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_large_patch16_224.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_model \
--log_dir /path/to/save/your_model/log \
--weight_decay 0.01 \
--seed 42 \
--save_ckpt_freq 5 \
--task_head_lr_weight 20 \
--opt_betas 0.9 0.98 \
--enable_deepspeed \
--checkpoint_activations
--batch_size
: batch size per GPU. Effective batch size =number of GPUs
*--batch_size
*--update_freq
. So in the above example, the effective batch size is8*16 = 128
.--finetune
: weight path of your pretrained models; please download the pretrained model weights in README.md--enable_deepspeed
: optional. If you use apex, please enable deepspeed.--checkpoint_activations
: using gradient checkpointing for saving GPU memory
- Get the prediction file of the fine-tuned BEiT3-base model on VQAv2 test with 8 V100-32GB:
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
--model beit3_base_patch16_480 \
--input_size 480 \
--task vqav2 \
--batch_size 16 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_base_patch16_480_vqa.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_prediction \
--eval \
--dist_eval
- Get the prediction file of the fine-tuned BEiT3-large model on VQAv2 test with 8 V100-32GB:
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
--model beit3_large_patch16_480 \
--input_size 480 \
--task vqav2 \
--batch_size 16 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_large_patch16_480_vqa.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_prediction \
--eval \
--dist_eval
Please then submit the prediction file in the output_dir
to the evaluation server to obtain the VQAv2 test-dev and test-std results.