PyTorch implementation of “Monge-Ampère Flow for Generative Modeling” arXiv:1809.10188
Density estimation of MNIST
python density_estimation .py - dataset MNIST - hdim 1024 - Nsteps 100 - train - cuda 7
Variational free energy of Ising
python variational_free_energy .py - L 16 - fe_exact - 2.3159198563359373 - train - cuda 7 - hdim 512 - Nsteps 50 - Batchsize 64 - symmetrize
python paper / plot_nll .py - outname nll .pdf
python density_estimation .py - hdim 1024 - Nsteps 100 - epsilon 0.1 - checkpoint data / learn_mnist / Simple_MLP_hdim1024_Batchsize100_lr0 .001_ Nsteps100_epsilon0 .1 / epoch - 1. chkp - show
python variational_free_energy .py - hdim 512 - Nsteps 50 - checkpoint data / learn_ot / ising_L16_d2_T2 .269185314213022_ symmetrize_Simple_MLP_hdim512_Batchsize64_lr0 .001_ delta0 .0_ Nsteps50_epsilon0 .1 / epoch - 1. chkp - show - L 16 - symmetrize
Reference: Exact Ising free energy density at critical temperature on $L\times L$ lattices (For details see Appendix B of the paper)
$L$
periodic
open
4
-2.33604476445
-1.9470001244979966
8
-2.3227349295609376
-2.1909718508291
16
-2.3159198563359373
-2.272901214087426
32
-2.3140498159960936
-2.2993352217736573
64
-2.3135805785878905
-2.3080749864821253