forked from ssppp/GreedyHash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar1.py
238 lines (185 loc) · 6.95 KB
/
cifar1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import torchvision.datasets as dsets
from torchvision import transforms
from torch.autograd import Variable
import torchvision
import math
import numpy as np
from cal_map import calculate_map, compress
# Hyper Parameters
num_epochs = 50
batch_size = 32
epoch_lr_decrease = 30
learning_rate = 0.001
encode_length = 12
num_classes = 10
train_transform = transforms.Compose([
transforms.Scale(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Scale(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Dataset
train_dataset = dsets.CIFAR10(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = dsets.CIFAR10(root='data/',
train=False,
transform=test_transform)
database_dataset = dsets.CIFAR10(root='data/',
train=False,
transform=test_transform)
# Construct training, query and database set
X = train_dataset.train_data
L = np.array(train_dataset.train_labels)
X = np.concatenate((X, test_dataset.test_data))
L = np.concatenate((L, np.array(test_dataset.test_labels)))
first = True
for label in range(10):
index = np.where(L == label)[0]
N = index.shape[0]
perm = np.random.permutation(N)
index = index[perm]
data = X[index[0:100]]
labels = L[index[0:100]]
if first:
test_L = labels
test_data = data
else:
test_L = np.concatenate((test_L, labels))
test_data = np.concatenate((test_data, data))
data = X[index[100:6000]]
labels = L[index[100:6000]]
if first:
dataset_L = labels
data_set = data
else:
dataset_L = np.concatenate((dataset_L, labels))
data_set = np.concatenate((data_set, data))
data = X[index[100:600]]
labels = L[index[100:600]]
if first:
train_L = labels
train_data = data
else:
train_L = np.concatenate((train_L, labels))
train_data = np.concatenate((train_data, data))
first = False
train_dataset.train_data = train_data
train_dataset.train_labels = train_L
test_dataset.test_data = test_data
test_dataset.test_labels = test_L
database_dataset.test_data = data_set
database_dataset.test_labels = dataset_L
# Data Loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
database_loader = torch.utils.data.DataLoader(dataset=database_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
# new layer
class hash(Function):
@staticmethod
def forward(ctx, input):
#ctx.save_for_backward(input)
return torch.sign(input)
@staticmethod
def backward(ctx, grad_output):
#input, = ctx.saved_tensors
#grad_output = grad_output.data
return grad_output
def hash_layer(input):
return hash.apply(input)
class CNN(nn.Module):
def __init__(self, encode_length, num_classes):
super(CNN, self).__init__()
self.alex = torchvision.models.alexnet(pretrained=True)
self.alex.classifier = nn.Sequential(*list(self.alex.classifier.children())[:6])
self.fc_plus = nn.Linear(4096, encode_length)
self.fc = nn.Linear(encode_length, num_classes, bias=False)
def forward(self, x):
x = self.alex.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.alex.classifier(x)
x = self.fc_plus(x)
code = hash_layer(x)
output = self.fc(code)
return output, x, code
cnn = CNN(encode_length=encode_length, num_classes=num_classes)
#cnn.load_state_dict(torch.load('temp.pkl'))
# Loss and Optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(cnn.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4)
def adjust_learning_rate(optimizer, epoch):
lr = learning_rate * (0.1 ** (epoch // epoch_lr_decrease))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
best = 0.0
# Train the Model
for epoch in range(num_epochs):
cnn.cuda().train()
adjust_learning_rate(optimizer, epoch)
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs, feature, _ = cnn(images)
loss1 = criterion(outputs, labels)
#loss2 = F.mse_loss(torch.abs(feature), Variable(torch.ones(feature.size()).cuda()))
loss2 = torch.mean(torch.abs(torch.pow(torch.abs(feature) - Variable(torch.ones(feature.size()).cuda()), 3)))
loss = loss1 + 0.1 * loss2
loss.backward()
optimizer.step()
if (i + 1) % (len(train_dataset) // batch_size / 2) == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss1: %.4f Loss2: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size,
loss1.data[0], loss2.data[0]))
# Test the Model
cnn.eval() # Change model to 'eval' mode
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.cuda(), volatile=True)
outputs, _, _ = cnn(images)
_, predicted = torch.max(outputs.cpu().data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model: %.2f %%' % (100.0 * correct / total))
if 1.0 * correct / total > best:
best = 1.0 * correct / total
torch.save(cnn.state_dict(), 'temp.pkl')
print('best: %.2f %%' % (best * 100.0))
# Save the Trained Model
torch.save(cnn.state_dict(), 'cifar1.pkl')
# Calculate MAP
#cnn.load_state_dict(torch.load('temp.pkl'))
cnn.eval()
retrievalB, retrievalL, queryB, queryL = compress(database_loader, test_loader, cnn)
print(np.shape(retrievalB))
print(np.shape(retrievalL))
print(np.shape(queryB))
print(np.shape(queryL))
print('---calculate map---')
result = calculate_map(qB=queryB, rB=retrievalB, queryL=queryL, retrievalL=retrievalL)
print(result)
"""
print('---calculate top map---')
result = calculate_top_map(qB=queryB, rB=retrievalB, queryL=queryL, retrievalL=retrievalL, topk=1000)
print(result)
"""