forked from ssppp/GreedyHash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet.py
283 lines (221 loc) · 8.59 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import torchvision.datasets as dsets
from torchvision import transforms
from torch.autograd import Variable
import torchvision
import math
import numpy as np
from PIL import Image
import os
import os.path
import matplotlib.image as mpimg
from cal_map import calculate_top_map, compress
# Hyper Parameters
num_epochs = 100
batch_size = 32
epoch_lr_decrease = 80
learning_rate = 0.001
encode_length = 16
num_classes = 100
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class IMAGENET(torch.utils.data.Dataset):
def __init__(self, root,
transform=None, target_transform=None, train=True, database_bool=False):
self.loader = default_loader
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
if train:
self.base_folder = 'train.txt'
elif database_bool:
self.base_folder = 'database.txt'
else:
self.base_folder = 'test.txt'
self.train_data = []
self.train_labels = []
filename = os.path.join(self.root, self.base_folder)
# fo = open(file, 'rb')
with open(filename, 'r') as file_to_read:
while True:
lines = file_to_read.readline()
# print lines.split()
if not lines:
break
pos_tmp = lines.split()[0]
# print pos_tmp
pos_tmp = os.path.join(self.root, pos_tmp)
label_tmp = lines.split()[1:]
self.train_data.append(pos_tmp)
self.train_labels.append(label_tmp)
self.train_data = np.array(self.train_data)
# self.train_labels.reshape()
self.train_labels = np.array(self.train_labels, dtype=np.float)
self.train_labels.reshape((-1, num_classes))
# self.train_data = np.concatenate(self.train_data)
# self.train_data = self.train_data.reshape((50000, 3, 32, 32))
# self.train_data = self.train_data.transpose((0, 2, 3, 1)) # convert to HWC
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.train_data[index], self.train_labels[index]
target = int(np.where(target == 1)[0])
img = self.loader(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.train_data)
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Scale(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Dataset
train_dataset = IMAGENET(root='data/imagenet',
train=True,
transform=train_transform)
test_dataset = IMAGENET(root='data/imagenet',
train=False,
transform=test_transform)
database_dataset = IMAGENET(root='data/imagenet',
train=False,
transform=test_transform,
database_bool=True)
# Data Loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
database_loader = torch.utils.data.DataLoader(dataset=database_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
# new layer
class hash(Function):
@staticmethod
def forward(ctx, input):
#ctx.save_for_backward(input)
return torch.sign(input)
@staticmethod
def backward(ctx, grad_output):
#input, = ctx.saved_tensors
#grad_output = grad_output.data
return grad_output
def hash_layer(input):
return hash.apply(input)
class CNN(nn.Module):
def __init__(self, encode_length, num_classes):
super(CNN, self).__init__()
self.alex = torchvision.models.alexnet(pretrained=True)
self.alex.classifier = nn.Sequential(*list(self.alex.classifier.children())[:6])
self.fc_plus = nn.Linear(4096, encode_length)
self.fc = nn.Linear(encode_length, num_classes, bias=False)
def forward(self, x):
x = self.alex.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.alex.classifier(x)
x = self.fc_plus(x)
code = hash_layer(x)
output = self.fc(code)
return output, x, code
cnn = CNN(encode_length=encode_length, num_classes=num_classes)
#cnn.load_state_dict(torch.load('temp.pkl'))
# Loss and Optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(cnn.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4)
def adjust_learning_rate(optimizer, epoch):
lr = learning_rate * (0.1 ** (epoch // epoch_lr_decrease))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
best = 0.0
# Train the Model
for epoch in range(num_epochs):
cnn.cuda().train()
adjust_learning_rate(optimizer, epoch)
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs, feature, _ = cnn(images)
loss1 = criterion(outputs, labels)
#loss2 = F.mse_loss(torch.abs(feature), Variable(torch.ones(feature.size()).cuda()))
loss2 = torch.mean(torch.abs(torch.pow(torch.abs(feature) - Variable(torch.ones(feature.size()).cuda()), 3)))
loss = loss1 + 1 * loss2
loss.backward()
optimizer.step()
if (i + 1) % (len(train_dataset) // batch_size / 2) == 0:
print ('Epoch [%d/%d], Iter [%d/%d] Loss1: %.4f Loss2: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size,
loss1.data[0], loss2.data[0]))
# Test the Model
cnn.eval() # Change model to 'eval' mode
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.cuda(), volatile=True)
outputs, _, _ = cnn(images)
_, predicted = torch.max(outputs.cpu().data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model: %.2f %%' % (100.0 * correct / total))
if 1.0 * correct / total > best:
best = 1.0 * correct / total
torch.save(cnn.state_dict(), 'temp.pkl')
print('best: %.2f %%' % (best * 100.0))
# Save the Trained Model
torch.save(cnn.state_dict(), 'imagenet.pkl')
# Calculate MAP
#cnn.load_state_dict(torch.load('temp.pkl'))
cnn.eval()
retrievalB, retrievalL, queryB, queryL = compress(database_loader, test_loader, cnn, classes=num_classes)
print(np.shape(retrievalB))
print(np.shape(retrievalL))
print(np.shape(queryB))
print(np.shape(queryL))
"""
print('---calculate map---')
result = calculate_map(qB=queryB, rB=retrievalB, queryL=queryL, retrievalL=retrievalL)
print(result)
"""
print('---calculate top map---')
result = calculate_top_map(qB=queryB, rB=retrievalB, queryL=queryL, retrievalL=retrievalL, topk=1000)
print(result)