-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpv_model.py
446 lines (396 loc) · 18.7 KB
/
pv_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import numpy as np
import pandas as pd
import pvlib
# from https://github.com/williamhobbs/2024_pvpmc_self_shade
def shade_fractions(fs_array, eff_row_side_num_mods):
"""
Shade fractions on each _course_ of a rack or tracker.
Parameters
----------
fs_array : numeric
Scalar or vector of shade fractions for the entire rack or tracker. Zero (0)
is unshaded and one (1) is fully shaded.
eff_row_side_num_mods : int
Number of courses in the rack as modules. EG: a 2P tracker has 2 courses.
Returns
-------
Array with the shade fraction on each course.
"""
fs_course = np.clip([
fs_array * eff_row_side_num_mods - course
for course in range(eff_row_side_num_mods)], 0, 1)
return fs_course
# from https://github.com/williamhobbs/2024_pvpmc_self_shade
def non_linear_shade(n_cells_up, fs, fd):
"""
Simple non-linear shade model.
Assume shade loss is linear as direct shade moves from bottom through
first cell, and then only diffuse for remainder of module up to the top.
EG: If there are 10 cells, and ``fs`` is 0.05, the bottom cell is only
half shaded, then the loss would be 50% of the direct irradiance. If
80% of POA global on module is direct irradiance, IE: ``fd = 0.2``,
then loss would be 40%. When the direct shade line reaches 10%, one
cell is completely shaded, then the loss is 80%, and there's only diffuse
light on the module. Any direct shade above the 1st cell has the same loss.
Parameters
----------
n_cells_up : int
Number of cells vertically up
fs : float
Fraction of shade on module, 1 is fully shaded
fd : numeric
Diffuse fraction
Returns
-------
Array of shade loss same size as ``fd``
"""
pnorm = np.where(fs < 1/n_cells_up, 1 - (1 - fd)*fs*n_cells_up, fd)
shade_loss = 1 - pnorm
return shade_loss
# Partially based on https://github.com/williamhobbs/2024_pvpmc_self_shade/tree/iam_and_spectrum
def model_pv_power(
resource_data,
latitude,
longitude,
mount_type,
gcr,
nameplate_dc,
nameplate_ac,
dc_loss_fraction,
gamma_pdc,
shade_loss_model,
default_site_transposition_model='perez-driesse',
backtrack=True,
backtrack_fraction=1,
max_tracker_angle=pd.NA,
axis_tilt=pd.NA,
axis_azimuth=pd.NA,
fixed_tilt=pd.NA,
fixed_azimuth=pd.NA,
n_cells_up=12,
row_side_num_mods=pd.NA,
row_height_center=pd.NA,
row_pitch=pd.NA,
collector_width=pd.NA,
bifacial=False,
bifaciality=0.8,
surface_tilt_timeseries=pd.Series([], dtype='float64'),
surface_azimuth_timeseries=pd.Series([], dtype='float64'),
use_measured_poa=False,
use_measured_temp_module=False,
cell_type='crystalline',
eta_inv_nom=0.98,
cross_axis_slope=0,
gcr_backtrack_setting=pd.NA,
programmed_gcr_am=pd.NA,
programmed_gcr_pm=pd.NA,
slope_aware_backtracking=True,
programmed_cross_axis_slope=pd.NA,
**kwargs,
):
"""
Power model for PV plants. Based a bit on https://github.com/williamhobbs/2024_pvpmc_self_shade/tree/iam_and_spectrum
Parameters
----------
resource_data : pandas.DataFrame
timeseries weather/resource data with the same format as is returned by
pvlib.iotools.get* functions
[long list of additional arguments defining a plant based on [1]]
surface_tilt_timeseries : pandas.DataFrame
(optional) custom timeseries of the angle between the panel surface and
the earth surface, accounting for panel rotation. [degrees]
surface_azimuth_timeseries : pandas.DataFrame
(optional) custom timeseries of the azimuth of the rotated panel,
determined by projecting the vector normal to the panel's surface to
the earth's surface. [degrees]
use_measured_poa : bool, default False
If True, used measure POA data from ``resource_data`` (must have
column name 'poa').
use_measured_temp_module: bool, default False
If True, use measured back of module temperature from ``resource_data``
(must have column name 'temp_module') in place of modeled cell
temperature.
Returns
-------
power_ac : pandas.Series
AC power. Same units as ``dc_capacity_plant`` and ``power_plant_ac_max``
(ideally kW).
fs_array : pandas.Series
Shaded fraction for all courses on each row in the array.
References
----------
.. [1] William Hobbs, pv-plant-specification-rev4.csv,
https://github.com/williamhobbs/pv-plant-specifications
"""
# Fill in some necessary variales with defaults if there is no value provided
# backtracking settings: default to AM/PM settings, then generic programmed value, then physical gcr
if pd.isna(gcr_backtrack_setting):
gcr_backtrack_setting = gcr
if pd.isna(programmed_gcr_am):
programmed_gcr_am = gcr_backtrack_setting
if pd.isna(programmed_gcr_pm):
programmed_gcr_pm = gcr_backtrack_setting
if backtrack_fraction==0:
backtrack = False # switch to truetracking to avoid divide by zero
# slope-aware backtracking settings
if (slope_aware_backtracking is True) & (pd.isna(programmed_cross_axis_slope)):
programmed_cross_axis_slope = cross_axis_slope
elif (slope_aware_backtracking is False) & (pd.isna(programmed_cross_axis_slope)):
programmed_cross_axis_slope = 0
elif (slope_aware_backtracking is False) & (pd.notna(programmed_cross_axis_slope)):
slope_aware_backtracking = True
print("""You provided a value for programmed_cross_axis_slope
AND did not set slope_aware_backtracking=True. Slope-aware
backtracking will be enabled.""")
# geometry
if pd.isna(axis_tilt):
axis_tilt = 0 # default if no value provided
if pd.isna(axis_azimuth):
axis_azimuth = 180 # default if no value provided
if pd.isna(row_side_num_mods):
row_side_num_mods = 1 # default if no value provided
if pd.isna(row_height_center):
row_height_center = 1 # default if no value provided
if pd.isna(max_tracker_angle):
max_tracker_angle = 60
# gcr = collector_width / row_pitch, gcr is a required input, so users can define 1 of the other 2.
# If all 3 are defined, check to make sure relationship is correct.
if pd.isna(collector_width) & pd.isna(row_pitch): # neither provided, assume default
collector_width = 2 # default if no value provided
row_pitch = collector_width / gcr
elif pd.isna(row_pitch):
row_pitch = collector_width / gcr
elif pd.isna(collector_width):
collector_width = gcr * row_pitch
elif gcr != collector_width / row_pitch:
raise ValueError("""You provided collector_width, row_pitch, and gcr,
but they are inconsistent. gcr must equal collector_width / row_pitch.
Please check these values. Note that gcr is required, and only one
of collector_width and row_pitch are needed to fully define the
related geometry.""")
# time and solar position with correct time
times = resource_data.index
loc = pvlib.location.Location(latitude=latitude, longitude=longitude, tz=times.tz)
solar_position = loc.get_solarposition(times)
# general geometry calcs
pitch = collector_width / gcr
# surface tilt and azimuth
if surface_tilt_timeseries.empty | surface_azimuth_timeseries.empty:
if mount_type == 'single-axis':
# modify tracker gcr if needed
if backtrack is True:
programmed_gcr = np.where(solar_position.azimuth < 180,
programmed_gcr_am*backtrack_fraction,
programmed_gcr_pm*backtrack_fraction)
else:
programmed_gcr = gcr_backtrack_setting
# change cross_axis_slope used for tracker orientation if needed
# if slope_aware_backtracking is True:
# programmed_cross_axis_slope = cross_axis_slope
# else:
# programmed_cross_axis_slope = 0
# tracker orientation
tr = pvlib.tracking.singleaxis(
solar_position.apparent_zenith,
solar_position.azimuth,
gcr=programmed_gcr,
axis_tilt=axis_tilt,
axis_azimuth=axis_azimuth,
cross_axis_tilt=programmed_cross_axis_slope,
max_angle=max_tracker_angle,
backtrack=backtrack)
# calculate shading with slope
fs_array = pvlib.shading.shaded_fraction1d(
solar_position.apparent_zenith,
solar_position.azimuth,
axis_azimuth=axis_azimuth,
shaded_row_rotation=tr.tracker_theta,
collector_width=collector_width, pitch=pitch,
axis_tilt=axis_tilt,
cross_axis_slope=cross_axis_slope)
surface_tilt = tr.surface_tilt.fillna(0)
surface_azimuth = tr.surface_azimuth.fillna(0)
elif mount_type == 'fixed':
# calculate shading
# model fixed array as a stuck tracker for azimuth and rotation
fs_array = pvlib.shading.shaded_fraction1d(
solar_position.apparent_zenith,
solar_position.azimuth,
axis_azimuth=fixed_azimuth - 90,
shaded_row_rotation=fixed_tilt,
collector_width=collector_width, pitch=pitch,
axis_tilt=axis_tilt,
cross_axis_slope=cross_axis_slope
)
surface_tilt = float(fixed_tilt)
surface_azimuth = float(fixed_azimuth)
else:
surface_tilt = surface_tilt_timeseries
surface_azimuth = surface_azimuth_timeseries
# calculate tracker theta, TODO: double-check this
tracker_theta = surface_tilt.where((surface_azimuth >= 180), -surface_tilt)
fs_array = pvlib.shading.shaded_fraction1d(
solar_position.apparent_zenith,
solar_position.azimuth,
axis_azimuth=axis_azimuth,
shaded_row_rotation=tracker_theta,
collector_width=collector_width, pitch=pitch,
axis_tilt=axis_tilt,
cross_axis_slope=cross_axis_slope)
# dni
dni_extra = pvlib.irradiance.get_extra_radiation(resource_data.index)
if 'dhi' not in resource_data:
print('calculating dhi')
# calculate DHI with "complete sum" AKA "closure" equation: DHI = GHI - DNI * cos(zenith)
resource_data['dhi'] = resource_data.ghi - resource_data.dni * pvlib.tools.cosd(solar_position.zenith)
# total irradiance
total_irrad = pvlib.irradiance.get_total_irradiance(
surface_tilt=surface_tilt,
surface_azimuth=surface_azimuth,
solar_zenith=solar_position.apparent_zenith,
solar_azimuth=solar_position.azimuth,
dni=resource_data.dni,
ghi=resource_data.ghi,
dhi=resource_data.dhi,
dni_extra=dni_extra,
albedo=resource_data.albedo,
model=default_site_transposition_model,
)
# set the "effective" number of modules on the side of each row
if shade_loss_model == 'non-linear_simple':
eff_row_side_num_mods = int(row_side_num_mods)
elif shade_loss_model == 'non-linear_simple_twin_module':
# twin modules are treated as effectively two modules with half as many cells each
eff_row_side_num_mods = int(row_side_num_mods) * 2
n_cells_up = n_cells_up / 2
# for linear shade loss, it really doesn't matter how many modules there are on the side of each row, so just run everything once to save time
elif shade_loss_model == 'linear':
eff_row_side_num_mods = 1
else:
raise ValueError("""shade_loss_model must be one of 'non-linear_simple',
'non-linear_simple_twin_module', or 'linear'.
You entered: '""" + shade_loss_model + """'""")
# work backwards to unshaded direct irradiance for the array:
# poa_direct_unshaded = total_irrad.poa_direct / (1-fs_array)
# !!! get_total_irradiance doesn't include shade like infinite_sheds,
# so no correction needed!!!
poa_direct_unshaded = total_irrad.poa_direct
# iam
aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth,
solar_position.apparent_zenith,
solar_position.azimuth)
# iam = pvlib.iam.physical(aoi, L=0.0032, n_ar=1.29)
# iam = pvlib.iam.physical(aoi, L=0.0032)
iam = pvlib.iam.physical(aoi)
poa_direct_unshaded = poa_direct_unshaded * iam
# spectral modifier for cdte
if cell_type == 'thin-film_cdte':
airmass = loc.get_airmass(solar_position=solar_position)
if 'precipitable_water' not in resource_data.columns:
if ('temp_air' in resource_data.columns) & ('relative_humidity' in resource_data.columns):
resource_data.precipitable_water = pvlib.atmosphere.gueymard94_pw(
temp_air=resource_data.temp_air,
relative_humidity=resource_data.relative_humidity)
else:
resource_data['precipitable_water'] = 1
spectral_modifier = pvlib.spectrum.spectral_factor_firstsolar(
precipitable_water=resource_data.precipitable_water,
airmass_absolute=airmass.airmass_absolute,
module_type='cdte',
)
poa_direct_unshaded = poa_direct_unshaded * spectral_modifier
# total poa on the front, but without direct shade impacts
# (would be keeping diffuse impacts from infinite_sheds if we used inifinite_sheds...)
resource_data['poa_modeled'] = (total_irrad.poa_diffuse + poa_direct_unshaded)
# set zero POA to nan to avoid divide by zero warnings
# this might not be needed!!!
resource_data['poa_modeled']=resource_data['poa_modeled'].replace(0, np.nan)
if use_measured_poa==True:
poa_total_without_direct_shade = resource_data.poa
else:
poa_total_without_direct_shade = resource_data['poa_modeled']
# shaded fraction for each course/string going up the row
fs = shade_fractions(fs_array, eff_row_side_num_mods)
# total POA *with* direct shade impacts
poa_total_with_direct_shade = ((1-fs) * poa_direct_unshaded.values) + total_irrad.poa_diffuse.values
# diffuse fraction
fd = total_irrad.poa_diffuse.values / poa_total_without_direct_shade.values
# calculate shade loss for each course/string
if shade_loss_model == 'linear':
shade_loss = fs * (1 - fd)
elif shade_loss_model == 'non-linear_simple' or shade_loss_model == 'non-linear_simple_twin_module':
shade_loss = non_linear_shade(n_cells_up, fs, fd)
# cell temperature
# steady state cell temperature - faiman is much faster than fuentes, simpler than sapm
t_cell_modeled = np.array([
pvlib.temperature.faiman(
poa_total_with_direct_shade[n],
resource_data.temp_air,
resource_data.wind_speed).values
for n in range(eff_row_side_num_mods)])
if use_measured_temp_module is True:
t_cell = resource_data.temp_module
else:
t_cell = t_cell_modeled
resource_data['t_cell_modeled'] = np.mean(t_cell_modeled,axis=0)
# adjust irradiance based on modeled shade loss
poa_effective = (1 - shade_loss) * poa_total_without_direct_shade.values
if bifacial is True:
# transposition models allowed for infinite_sheds:
if default_site_transposition_model not in ['haydavies','isotropic']:
print('pvlib.bifacial.infinite_sheds does not currently accept the ' +
default_site_transposition_model + ' model.')
print('using haydavies instead.')
inf_sheds_transposition_model = 'haydavies'
else:
inf_sheds_transposition_model = default_site_transposition_model
# run infinite_sheds to get rear irradiance
irrad_inf_sh = pvlib.bifacial.infinite_sheds.get_irradiance(
surface_tilt=surface_tilt,
surface_azimuth=surface_azimuth,
solar_zenith=solar_position.apparent_zenith,
solar_azimuth=solar_position.azimuth,
gcr=gcr,
height=row_height_center,
pitch=row_pitch,
ghi=resource_data.ghi,
dhi=resource_data.dhi,
dni=resource_data.dni,
albedo=resource_data.albedo,
model=inf_sheds_transposition_model,
dni_extra=dni_extra,
bifaciality=bifaciality,
)
# now for the rear irradiance
fs_array_back = irrad_inf_sh['shaded_fraction_back']
poa_back_direct_unshaded = irrad_inf_sh['poa_back_direct'] / (1-fs_array_back)
poa_back_total_without_direct_shade = irrad_inf_sh['poa_back_diffuse'] + poa_back_direct_unshaded
poa_back_total_without_direct_shade.replace(0, np.nan, inplace=True)
fs_back = shade_fractions(fs_array_back, eff_row_side_num_mods)
poa_back_total_with_direct_shade = ((1-fs_back) * poa_back_direct_unshaded.values) + irrad_inf_sh['poa_back_diffuse'].values
fd = irrad_inf_sh['poa_back_diffuse'].values / poa_back_total_without_direct_shade.values
if shade_loss_model == 'linear':
# shade_loss = fs * (1 - fd)
shade_loss = fs_back * (1 - fd)
elif shade_loss_model == 'non-linear_simple' or shade_loss_model == 'non-linear_simple_twin_module':
# shade_loss = non_linear_shade(n_cells_up, fs, fd)
shade_loss = non_linear_shade(n_cells_up, fs_back, fd)
# adjust irradiance based on modeled shade loss, include bifaciality
poa_back_effective = bifaciality * (1 - shade_loss) * poa_back_total_without_direct_shade.values
# combine front and back effective POA
poa_effective = poa_effective + poa_back_effective
# PVWatts dc power
pdc_shaded = pvlib.pvsystem.pvwatts_dc(
poa_effective, t_cell, nameplate_dc, gamma_pdc)
pdc_inv = pdc_shaded * (1 - dc_loss_fraction) # dc power into the inverter after losses
# inverter dc input is ac nameplate divided by nominal inverter efficiency
pdc0 = nameplate_ac/eta_inv_nom
# average the dc power across n positions up the row
pdc_inv_total = pd.DataFrame(pdc_inv.T, index=times).mean(axis=1)
# fill nan with zero
pdc_inv_total.fillna(0, inplace=True)
resource_data.fillna(0, inplace=True)
# ac power with PVWatts inverter model
power_ac = pvlib.inverter.pvwatts(pdc_inv_total, pdc0, eta_inv_nom)
# return power_ac, resource_data
return power_ac, surface_tilt