diff --git a/graphsage/model.py b/graphsage/model.py index aeca282..0c3446f 100644 --- a/graphsage/model.py +++ b/graphsage/model.py @@ -46,7 +46,7 @@ def load_cora(): with open("cora/cora.content") as fp: for i,line in enumerate(fp): info = line.strip().split() - feat_data[i,:] = map(float, info[1:-1]) + feat_data[i,:] = list(map(float, info[1:-1])) node_map[info[0]] = i if not info[-1] in label_map: label_map[info[-1]] = len(label_map) @@ -99,11 +99,11 @@ def run_cora(): optimizer.step() end_time = time.time() times.append(end_time-start_time) - print batch, loss.data[0] + print(batch, loss.data.item()) val_output = graphsage.forward(val) - print "Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro") - print "Average batch time:", np.mean(times) + print("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro")) + print("Average batch time:", np.mean(times)) def load_pubmed(): #hardcoded for simplicity... @@ -171,11 +171,11 @@ def run_pubmed(): optimizer.step() end_time = time.time() times.append(end_time-start_time) - print batch, loss.data[0] + print(batch, loss.data.item()) val_output = graphsage.forward(val) - print "Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro") - print "Average batch time:", np.mean(times) + print("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro")) + print("Average batch time:", np.mean(times)) if __name__ == "__main__": run_cora()