-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlarge-object-space.h
525 lines (460 loc) · 17.4 KB
/
large-object-space.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#ifndef LARGE_OBJECT_SPACE_H
#define LARGE_OBJECT_SPACE_H
#include <pthread.h>
#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "gc-assert.h"
#include "gc-ref.h"
#include "gc-conservative-ref.h"
#include "gc-trace.h"
#include "address-map.h"
#include "address-set.h"
#include "background-thread.h"
#include "freelist.h"
// A mark-sweep space with generational support.
struct gc_heap;
enum large_object_state {
LARGE_OBJECT_NURSERY = 0,
LARGE_OBJECT_MARKED_BIT = 1,
LARGE_OBJECT_MARK_TOGGLE_BIT = 2,
LARGE_OBJECT_MARK_0 = LARGE_OBJECT_MARKED_BIT,
LARGE_OBJECT_MARK_1 = LARGE_OBJECT_MARKED_BIT | LARGE_OBJECT_MARK_TOGGLE_BIT
};
struct large_object {
uintptr_t addr;
size_t size;
};
struct large_object_node;
struct large_object_live_data {
uint8_t mark;
enum gc_trace_kind trace;
};
struct large_object_dead_data {
uint8_t age;
struct large_object_node **prev;
struct large_object_node *next;
};
struct large_object_data {
uint8_t is_live;
union {
struct large_object_live_data live;
struct large_object_dead_data dead;
};
};
#define SPLAY_TREE_PREFIX large_object_
typedef struct large_object large_object_key_span;
typedef uintptr_t large_object_key;
typedef struct large_object_data large_object_value;
static inline int
large_object_compare(uintptr_t addr, struct large_object obj) {
if (addr < obj.addr) return -1;
if (addr - obj.addr < obj.size) return 0;
return 1;
}
static inline uintptr_t
large_object_span_start(struct large_object obj) {
return obj.addr;
}
#include "splay-tree.h"
DEFINE_FREELIST(large_object_freelist, sizeof(uintptr_t) * 8 - 1, 2,
struct large_object_node*);
struct large_object_space {
// Lock for object_map, quarantine, nursery, and marked.
pthread_mutex_t lock;
// Lock for object_tree.
pthread_mutex_t object_tree_lock;
// Lock for remembered_edges.
pthread_mutex_t remembered_edges_lock;
// Locking order: You must hold the space lock when taking
// object_tree_lock. Take no other lock while holding
// object_tree_lock. remembered_edges_lock is a leaf; take no locks
// when holding it.
// The value for a large_object_node's "mark" field indicating a
// marked object; always nonzero, and alternating between two values
// at every major GC.
uint8_t marked;
// Splay tree of objects, keyed by <addr, size> tuple. Useful when
// looking up object-for-address.
struct large_object_tree object_tree;
// Hash table of objects, where values are pointers to splay tree
// nodes. Useful when you have the object address and just want to
// check something about it (for example its size).
struct address_map object_map;
// In generational configurations, we collect all allocations in the
// last cycle into the nursery.
struct address_map nursery;
// Size-segregated freelist of dead objects. Allocations are first
// served from the quarantine freelist before falling back to the OS
// if needed. Collected objects spend a second or two in quarantine
// before being returned to the OS. This is an optimization to avoid
// mucking about too much with the TLB and so on.
struct large_object_freelist quarantine;
// Set of edges from lospace that may reference young objects,
// possibly in other spaces.
struct address_set remembered_edges;
size_t page_size;
size_t page_size_log2;
size_t total_pages;
size_t free_pages;
size_t live_pages_at_last_collection;
size_t pages_freed_by_last_collection;
int synchronous_release;
};
static size_t
large_object_space_npages(struct large_object_space *space, size_t bytes) {
return (bytes + space->page_size - 1) >> space->page_size_log2;
}
static size_t
large_object_space_size_at_last_collection(struct large_object_space *space) {
return space->live_pages_at_last_collection << space->page_size_log2;
}
static inline int
large_object_space_contains_with_lock(struct large_object_space *space,
struct gc_ref ref) {
return address_map_contains(&space->object_map, gc_ref_value(ref));
}
static inline int
large_object_space_contains(struct large_object_space *space,
struct gc_ref ref) {
pthread_mutex_lock(&space->lock);
int ret = large_object_space_contains_with_lock(space, ref);
pthread_mutex_unlock(&space->lock);
return ret;
}
static inline struct gc_ref
large_object_space_object_containing_edge(struct large_object_space *space,
struct gc_edge edge) {
pthread_mutex_lock(&space->object_tree_lock);
struct large_object_node *node =
large_object_tree_lookup(&space->object_tree, gc_edge_address(edge));
uintptr_t addr = (node && node->value.is_live) ? node->key.addr : 0;
pthread_mutex_unlock(&space->object_tree_lock);
return gc_ref(addr);
}
static void
large_object_space_start_gc(struct large_object_space *space, int is_minor_gc) {
// Take the space lock to prevent
// large_object_space_process_quarantine from concurrently mutating
// the object map.
pthread_mutex_lock(&space->lock);
if (!is_minor_gc) {
space->marked ^= LARGE_OBJECT_MARK_TOGGLE_BIT;
space->live_pages_at_last_collection = 0;
}
}
static inline struct gc_trace_plan
large_object_space_object_trace_plan(struct large_object_space *space,
struct gc_ref ref) {
uintptr_t node_bits =
address_map_lookup(&space->object_map, gc_ref_value(ref), 0);
GC_ASSERT(node_bits);
struct large_object_node *node = (struct large_object_node*) node_bits;
switch (node->value.live.trace) {
case GC_TRACE_PRECISELY:
return (struct gc_trace_plan){ GC_TRACE_PRECISELY, };
case GC_TRACE_NONE:
return (struct gc_trace_plan){ GC_TRACE_NONE, };
#if GC_CONSERVATIVE_TRACE
case GC_TRACE_CONSERVATIVELY: {
return (struct gc_trace_plan){ GC_TRACE_CONSERVATIVELY, node->key.size };
}
// No large ephemerons.
#endif
default:
GC_CRASH();
}
}
static uint8_t*
large_object_node_mark_loc(struct large_object_node *node) {
GC_ASSERT(node->value.is_live);
return &node->value.live.mark;
}
static uint8_t
large_object_node_get_mark(struct large_object_node *node) {
return atomic_load_explicit(large_object_node_mark_loc(node),
memory_order_acquire);
}
static struct large_object_node*
large_object_space_lookup(struct large_object_space *space, struct gc_ref ref) {
return (struct large_object_node*) address_map_lookup(&space->object_map,
gc_ref_value(ref),
0);
}
static int
large_object_space_mark(struct large_object_space *space, struct gc_ref ref) {
struct large_object_node *node = large_object_space_lookup(space, ref);
if (!node)
return 0;
GC_ASSERT(node->value.is_live);
uint8_t *loc = large_object_node_mark_loc(node);
uint8_t mark = atomic_load_explicit(loc, memory_order_relaxed);
do {
if (mark == space->marked)
return 0;
} while (!atomic_compare_exchange_weak_explicit(loc, &mark, space->marked,
memory_order_acq_rel,
memory_order_acquire));
size_t pages = node->key.size >> space->page_size_log2;
atomic_fetch_add(&space->live_pages_at_last_collection, pages);
return 1;
}
static int
large_object_space_is_marked(struct large_object_space *space,
struct gc_ref ref) {
struct large_object_node *node = large_object_space_lookup(space, ref);
if (!node)
return 0;
GC_ASSERT(node->value.is_live);
return atomic_load_explicit(large_object_node_mark_loc(node),
memory_order_acquire) == space->marked;
}
static int
large_object_space_is_survivor(struct large_object_space *space,
struct gc_ref ref) {
GC_ASSERT(large_object_space_contains(space, ref));
pthread_mutex_lock(&space->lock);
int old = large_object_space_is_marked(space, ref);
pthread_mutex_unlock(&space->lock);
return old;
}
static int
large_object_space_remember_edge(struct large_object_space *space,
struct gc_ref obj,
struct gc_edge edge) {
GC_ASSERT(large_object_space_contains(space, obj));
if (!large_object_space_is_survivor(space, obj))
return 0;
uintptr_t edge_addr = gc_edge_address(edge);
int remembered = 0;
pthread_mutex_lock(&space->remembered_edges_lock);
if (!address_set_contains(&space->remembered_edges, edge_addr)) {
address_set_add(&space->remembered_edges, edge_addr);
remembered = 1;
}
pthread_mutex_unlock(&space->remembered_edges_lock);
return remembered;
}
static void
large_object_space_forget_edge(struct large_object_space *space,
struct gc_edge edge) {
uintptr_t edge_addr = gc_edge_address(edge);
pthread_mutex_lock(&space->remembered_edges_lock);
GC_ASSERT(address_set_contains(&space->remembered_edges, edge_addr));
address_set_remove(&space->remembered_edges, edge_addr);
pthread_mutex_unlock(&space->remembered_edges_lock);
}
static void
large_object_space_clear_remembered_edges(struct large_object_space *space) {
address_set_clear(&space->remembered_edges);
}
static void
large_object_space_add_to_freelist(struct large_object_space *space,
struct large_object_node *node) {
node->value.is_live = 0;
struct large_object_dead_data *data = &node->value.dead;
memset(data, 0, sizeof(*data));
data->age = 0;
struct large_object_node **bucket =
large_object_freelist_bucket(&space->quarantine, node->key.size);
data->next = *bucket;
if (data->next)
data->next->value.dead.prev = &data->next;
data->prev = bucket;
*bucket = node;
}
static void
large_object_space_remove_from_freelist(struct large_object_space *space,
struct large_object_node *node) {
GC_ASSERT(!node->value.is_live);
struct large_object_dead_data *dead = &node->value.dead;
GC_ASSERT(dead->prev);
if (dead->next)
dead->next->value.dead.prev = dead->prev;
*dead->prev = dead->next;
dead->prev = NULL;
dead->next = NULL;
}
static void
large_object_space_sweep_one(uintptr_t addr, uintptr_t node_bits,
void *data) {
struct large_object_space *space = data;
struct large_object_node *node = (struct large_object_node*) node_bits;
if (!node->value.is_live)
return;
GC_ASSERT(node->value.is_live);
uint8_t mark = atomic_load_explicit(large_object_node_mark_loc(node),
memory_order_acquire);
if (mark != space->marked)
large_object_space_add_to_freelist(space, node);
}
static void
large_object_space_process_quarantine(void *data) {
struct large_object_space *space = data;
pthread_mutex_lock(&space->lock);
pthread_mutex_lock(&space->object_tree_lock);
for (size_t idx = 0; idx < large_object_freelist_num_size_classes(); idx++) {
struct large_object_node **link = &space->quarantine.buckets[idx];
for (struct large_object_node *node = *link; node; node = *link) {
GC_ASSERT(!node->value.is_live);
if (++node->value.dead.age < 2) {
link = &node->value.dead.next;
} else {
struct large_object obj = node->key;
large_object_space_remove_from_freelist(space, node);
address_map_remove(&space->object_map, obj.addr);
large_object_tree_remove(&space->object_tree, obj.addr);
gc_platform_release_memory((void*)obj.addr, obj.size);
}
}
}
pthread_mutex_unlock(&space->object_tree_lock);
pthread_mutex_unlock(&space->lock);
}
static void
large_object_space_finish_gc(struct large_object_space *space,
int is_minor_gc) {
if (GC_GENERATIONAL) {
address_map_for_each(is_minor_gc ? &space->nursery : &space->object_map,
large_object_space_sweep_one,
space);
address_map_clear(&space->nursery);
} else {
address_map_for_each(&space->object_map,
large_object_space_sweep_one,
space);
}
size_t free_pages =
space->total_pages - space->live_pages_at_last_collection;
space->pages_freed_by_last_collection = free_pages - space->free_pages;
space->free_pages = free_pages;
pthread_mutex_unlock(&space->lock);
if (space->synchronous_release)
large_object_space_process_quarantine(space);
}
static void
large_object_space_add_to_allocation_counter(struct large_object_space *space,
uint64_t *counter) {
size_t pages = space->total_pages - space->free_pages;
pages -= space->live_pages_at_last_collection;
*counter += pages << space->page_size_log2;
}
static inline struct gc_ref
large_object_space_mark_conservative_ref(struct large_object_space *space,
struct gc_conservative_ref ref,
int possibly_interior) {
uintptr_t addr = gc_conservative_ref_value(ref);
if (!possibly_interior) {
// Addr not aligned on page boundary? Not a large object.
// Otherwise strip the displacement to obtain the true base address.
uintptr_t displacement = addr & (space->page_size - 1);
if (!gc_is_valid_conservative_ref_displacement(displacement))
return gc_ref_null();
addr -= displacement;
}
struct large_object_node *node;
if (possibly_interior) {
pthread_mutex_lock(&space->object_tree_lock);
node = large_object_tree_lookup(&space->object_tree, addr);
pthread_mutex_unlock(&space->object_tree_lock);
} else {
node = large_object_space_lookup(space, gc_ref(addr));
}
if (node && node->value.is_live &&
large_object_space_mark(space, gc_ref(node->key.addr)))
return gc_ref(node->key.addr);
return gc_ref_null();
}
static void*
large_object_space_alloc(struct large_object_space *space, size_t npages,
enum gc_trace_kind trace) {
void *ret = NULL;
pthread_mutex_lock(&space->lock);
size_t size = npages << space->page_size_log2;
for (size_t idx = large_object_freelist_size_class(size);
idx < large_object_freelist_num_size_classes();
idx++) {
struct large_object_node *node = space->quarantine.buckets[idx];
while (node && node->key.size < size)
node = node->value.dead.next;
if (node) {
// We found a suitable hole in quarantine. Unlink it from the
// freelist.
large_object_space_remove_from_freelist(space, node);
// Mark the hole as live.
node->value.is_live = 1;
memset(&node->value.live, 0, sizeof(node->value.live));
node->value.live.mark = LARGE_OBJECT_NURSERY;
node->value.live.trace = trace;
// If the hole is actually too big, trim its tail.
if (node->key.size > size) {
struct large_object tail = {node->key.addr + size, node->key.size - size};
struct large_object_data tail_value = {0,};
node->key.size = size;
pthread_mutex_lock(&space->object_tree_lock);
struct large_object_node *tail_node =
large_object_tree_insert(&space->object_tree, tail, tail_value);
pthread_mutex_unlock(&space->object_tree_lock);
uintptr_t tail_node_bits = (uintptr_t)tail_node;
address_map_add(&space->object_map, tail_node->key.addr,
tail_node_bits);
large_object_space_add_to_freelist(space, tail_node);
}
// Add the object to the nursery.
if (GC_GENERATIONAL)
address_map_add(&space->nursery, node->key.addr, (uintptr_t)node);
space->free_pages -= npages;
ret = (void*)node->key.addr;
memset(ret, 0, size);
break;
}
}
// If we didn't find anything in the quarantine, get fresh pages from the OS.
if (!ret) {
ret = gc_platform_acquire_memory(size, 0);
if (ret) {
uintptr_t addr = (uintptr_t)ret;
struct large_object k = { addr, size };
struct large_object_data v = {0,};
v.is_live = 1;
v.live.mark = LARGE_OBJECT_NURSERY;
v.live.trace = trace;
pthread_mutex_lock(&space->object_tree_lock);
struct large_object_node *node =
large_object_tree_insert(&space->object_tree, k, v);
uintptr_t node_bits = (uintptr_t)node;
address_map_add(&space->object_map, addr, node_bits);
space->total_pages += npages;
pthread_mutex_unlock(&space->object_tree_lock);
}
}
pthread_mutex_unlock(&space->lock);
return ret;
}
static int
large_object_space_init(struct large_object_space *space,
struct gc_heap *heap,
struct gc_background_thread *thread) {
memset(space, 0, sizeof(*space));
pthread_mutex_init(&space->lock, NULL);
pthread_mutex_init(&space->object_tree_lock, NULL);
pthread_mutex_init(&space->remembered_edges_lock, NULL);
space->page_size = getpagesize();
space->page_size_log2 = __builtin_ctz(space->page_size);
space->marked = LARGE_OBJECT_MARK_0;
large_object_tree_init(&space->object_tree);
address_map_init(&space->object_map);
address_map_init(&space->nursery);
large_object_freelist_init(&space->quarantine);
address_set_init(&space->remembered_edges);
if (thread)
gc_background_thread_add_task(thread, GC_BACKGROUND_TASK_START,
large_object_space_process_quarantine,
space);
else
space->synchronous_release = 1;
return 1;
}
#endif // LARGE_OBJECT_SPACE_H