forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_foreach.py
918 lines (765 loc) · 47.7 KB
/
test_foreach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, skipCUDAIfRocm
from torch._six import inf, nan
N_values = [20] if not TEST_WITH_SLOW else [30, 300]
class TestForeach(TestCase):
foreach_bin_ops = [
torch._foreach_add,
torch._foreach_sub,
torch._foreach_mul,
torch._foreach_div,
]
foreach_bin_ops_ = [
torch._foreach_add_,
torch._foreach_sub_,
torch._foreach_mul_,
torch._foreach_div_,
]
torch_bin_ops = [
torch.add,
torch.sub,
torch.mul,
torch.div,
]
unary_ops = [
# foreach_op, foreach_op_, torch_op, bf16, complex64/128
(torch._foreach_sqrt, torch._foreach_sqrt_, torch.sqrt, True , True),
(torch._foreach_exp, torch._foreach_exp_, torch.exp, True, True),
(torch._foreach_acos, torch._foreach_acos_, torch.acos, False, True),
(torch._foreach_asin, torch._foreach_asin_, torch.asin, False, True),
(torch._foreach_atan, torch._foreach_atan_, torch.atan, False, True),
(torch._foreach_cos, torch._foreach_cos_, torch.cos, True, True),
(torch._foreach_cosh, torch._foreach_cosh_, torch.cosh, False, True),
(torch._foreach_log, torch._foreach_log_, torch.log, True, True),
(torch._foreach_log10, torch._foreach_log10_, torch.log10, True, True),
(torch._foreach_log2, torch._foreach_log2_, torch.log2, True, True),
(torch._foreach_neg, torch._foreach_neg_, torch.neg, True, True),
(torch._foreach_tan, torch._foreach_tan_, torch.tan, False, True),
(torch._foreach_tanh, torch._foreach_tanh_, torch.tanh, True, True),
(torch._foreach_sin, torch._foreach_sin_, torch.sin, False, True),
(torch._foreach_sinh, torch._foreach_sinh_, torch.sinh, False, True),
(torch._foreach_ceil, torch._foreach_ceil_, torch.ceil, False, False),
(torch._foreach_erf, torch._foreach_erf_, torch.erf, True, False),
(torch._foreach_erfc, torch._foreach_erfc_, torch.erfc, False, False),
(torch._foreach_expm1, torch._foreach_expm1_, torch.expm1, False, False),
(torch._foreach_floor, torch._foreach_floor_, torch.floor, False, False),
(torch._foreach_log1p, torch._foreach_log1p_, torch.log1p, True, False),
(torch._foreach_round, torch._foreach_round_, torch.round, False, False),
(torch._foreach_frac, torch._foreach_frac_, torch.frac, False, False),
# See test_abs
# (torch._foreach_abs, torch._foreach_abs_, torch.abs, True, True),
]
def _get_test_data(self, device, dtype, N):
if dtype in [torch.bfloat16, torch.bool, torch.float16]:
tensors = [torch.randn(N, N, device=device).to(dtype) for _ in range(N)]
elif dtype in torch.testing.get_all_int_dtypes():
tensors = [torch.randint(1, 100, (N, N), device=device, dtype=dtype) for _ in range(N)]
else:
tensors = [torch.randn(N, N, device=device, dtype=dtype) for _ in range(N)]
return tensors
def _test_bin_op_list(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_op(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors1, tensors2)
foreach_op_(tensors1, tensors2)
self.assertEqual(res, tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors1, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors1, expected)
def _test_pointwise_op(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in N_values:
values = [2 + i for i in range(N)]
for vals in [values[0], values]:
tensors = self._get_test_data(device, dtype, N)
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
if not isinstance(vals, list):
expected = [torch_op(tensors[i].to(dtype=control_dtype),
tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype),
value=values[0]).to(dtype=dtype) for i in range(N)]
else:
expected = [torch_op(tensors[i].to(dtype=control_dtype),
tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype),
value=values[i]).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors, tensors1, tensors2, vals)
foreach_op_(tensors, tensors1, tensors2, vals)
self.assertEqual(res, tensors)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
# test error cases
for op in [torch._foreach_addcmul, torch._foreach_addcmul_, torch._foreach_addcdiv, torch._foreach_addcdiv_]:
tensors = self._get_test_data(device, dtype, N)
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
op(tensors, tensors1, tensors2, [2 for _ in range(N + 1)])
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
op(tensors, tensors1, tensors2, [2 for _ in range(N - 1)])
tensors = self._get_test_data(device, dtype, N + 1)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 21 and 20"):
op(tensors, tensors1, tensors2, [2 for _ in range(N)])
tensors1 = self._get_test_data(device, dtype, N + 1)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 21 and 20"):
op(tensors, tensors1, tensors2, [2 for _ in range(N)])
def _test_bin_op_list_alpha(self, device, dtype, foreach_op, foreach_op_, torch_op):
for N in [30, 300]:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
alpha = 2
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_op(tensors1[i].to(dtype=control_dtype),
torch.mul(tensors2[i].to(dtype=control_dtype),
alpha)).to(dtype=dtype) for i in range(N)]
res = foreach_op(tensors1, tensors2, alpha=alpha)
foreach_op_(tensors1, tensors2, alpha=alpha)
self.assertEqual(res, tensors1)
if dtype == torch.bool:
expected = [e.to(torch.bool) for e in expected]
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors1, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors1, expected)
#
# Unary ops
#
@dtypes(*(torch.testing.floating_and_complex_types_and(torch.bfloat16, torch.half)))
def test_unary_ops(self, device, dtype):
for fe_op, fe_op_, torch_op, support_bfloat16, support_complex in self.unary_ops:
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
if self.device_type == 'cpu' and dtype == torch.half and torch_op not in [torch.neg, torch.frac]:
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'Half\'"):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'Half\'"):
res = fe_op(tensors1)
break
if dtype == torch.bfloat16 and not support_bfloat16:
if self.device_type == 'cuda' or torch_op in [torch.sinh, torch.cosh]:
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'BFloat16\'"):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaisesRegex(RuntimeError, r"not implemented for \'BFloat16\'"):
res = fe_op(tensors1)
break
if dtype in [torch.complex64, torch.complex128] and not support_complex:
# not using assertRaisesRegex due to different error messages
with self.assertRaises(RuntimeError):
expected = [torch_op(tensors1[i]) for i in range(N)]
with self.assertRaises(RuntimeError):
res = fe_op(tensors1)
break
expected = [torch_op(tensors1[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = fe_op(tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
fe_op_(tensors1)
self.assertEqual(res, tensors1)
else:
self.assertEqual(res, expected)
fe_op_(tensors1)
self.assertEqual(res, tensors1)
# Separate test for abs due to a lot of special cases
# Absolute value of a complex number a + bj is defined as sqrt(a^2 + b^2), i.e. a floating point
@dtypes(*(torch.testing.floating_and_complex_types_and(torch.bfloat16, torch.half)))
def test_abs(self, device, dtype):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch.abs(tensors1[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res = torch._foreach_abs(tensors1)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
torch._foreach_abs_(tensors1)
self.assertEqual(res, tensors1)
else:
expected = [torch.abs(tensors1[i]) for i in range(N)]
self.assertEqual(res, expected)
if dtype in [torch.complex64, torch.complex128]:
with self.assertRaisesRegex(RuntimeError, r"In-place abs is not supported for complex tensors."):
torch._foreach_abs_(tensors1)
else:
torch._foreach_abs_(tensors1)
self.assertEqual(res, tensors1)
#
# Pointwise ops
#
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_addcmul(self, device, dtype):
if self.device_type == 'cpu':
if dtype == torch.half:
with self.assertRaisesRegex(RuntimeError, r"\"addcmul_cpu_out\" not implemented for \'Half\'"):
self._test_pointwise_op(device, dtype, torch._foreach_addcmul,
torch._foreach_addcmul_, torch.addcmul)
return
self._test_pointwise_op(device, dtype, torch._foreach_addcmul, torch._foreach_addcmul_, torch.addcmul)
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_addcdiv(self, device, dtype):
if dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.uint8]:
with self.assertRaisesRegex(RuntimeError,
"Integer division with addcdiv is no longer supported, and in a future"):
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv, torch._foreach_addcdiv_, torch.addcdiv)
return
if self.device_type == 'cpu':
if dtype == torch.half:
with self.assertRaisesRegex(RuntimeError, r"\"addcdiv_cpu_out\" not implemented for \'Half\'"):
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv,
torch._foreach_addcdiv_, torch.addcdiv)
return
self._test_pointwise_op(device, dtype, torch._foreach_addcdiv, torch._foreach_addcdiv_, torch.addcdiv)
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_min_max(self, device, dtype):
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
tensors2 = self._get_test_data(device, dtype, N)
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected_max = [torch.max(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
expected_min = [torch.min(tensors1[i].to(dtype=control_dtype),
tensors2[i].to(dtype=control_dtype)).to(dtype=dtype) for i in range(N)]
res_max = torch._foreach_maximum(tensors1, tensors2)
self.assertEqual(res_max, expected_max)
res_min = torch._foreach_minimum(tensors1, tensors2)
self.assertEqual(res_min, expected_min)
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False)))
def test_max_min_float_inf_nan(self, device, dtype):
a = [
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
]
b = [
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
]
expected = [torch.max(a1, b1) for a1, b1 in zip(a, b)]
res = torch._foreach_maximum(a, b)
self.assertEqual(expected, res)
expected = [torch.min(a1, b1) for a1, b1 in zip(a, b)]
res = torch._foreach_minimum(a, b)
self.assertEqual(expected, res)
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=False)))
def test_max_min_inf_nan(self, device, dtype):
a = [
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([-inf], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype)
]
b = [
torch.tensor([-inf], device=device, dtype=dtype),
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([inf], device=device, dtype=dtype),
torch.tensor([nan], device=device, dtype=dtype)
]
expected_max = [torch.max(a1, b1) for a1, b1 in zip(a, b)]
res_max = torch._foreach_maximum(a, b)
self.assertEqual(expected_max, res_max)
expected_min = [torch.min(a1, b1) for a1, b1 in zip(a, b)]
res_min = torch._foreach_minimum(a, b)
self.assertEqual(expected_min, res_min)
#
# Ops with scalar
#
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
if dtype == torch.bool:
self.assertEqual(res, expected)
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
if foreach_bin_op_ == torch._foreach_div_ and dtype in torch.testing.integral_types() and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError,
"can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
# TODO[type promotion]: Fix once type promotion is enabled.
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
self.assertEqual(res, [e.to(dtype) for e in expected])
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, expected)
# TODO[Fix scalar list]:
# We need to update codegen to correctly handle function overloads with float[] and int[].
# As optimizers work with float tensors, the result will always be torch.float32 for now.
# Current schema is using 'float[]' as scalar list type.
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [1 for _ in range(N)]
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes() or dtype == torch.bool) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
res = foreach_bin_op(tensors, scalars)
if dtype == torch.bool:
self.assertEqual(res, [torch_bin_op(t.to(torch.float32), s) for t, s in zip(tensors, scalars)])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
if dtype in torch.testing.integral_types():
if self.device_type == 'cpu':
self.assertEqual(res, [e.to(torch.float32) for e in expected])
else:
# TODO[type promotion]: Fix once type promotion is enabled.
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types() and self.device_type == 'cpu':
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
else:
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3.3
# Mimics cuda kernel dtype flow. With fp16/bf16 input, runs in fp32 and casts output back to fp16/bf16.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_bin_op(t.to(dtype=control_dtype),
scalar) for t in tensors]
if (dtype is torch.float16 or dtype is torch.bfloat16):
expected = [e.to(dtype=dtype) for e in expected]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
res = foreach_bin_op(tensors, scalar)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
return
foreach_bin_op_(tensors, scalar)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [1.1 for _ in range(N)]
# If incoming dtype is float16 or bfloat16, runs in float32 and casts output back to dtype.
control_dtype = torch.float32 if (self.device_type == 'cuda' and
(dtype is torch.float16 or dtype is torch.bfloat16)) else dtype
expected = [torch_bin_op(t.to(dtype=control_dtype),
s) for t, s in zip(tensors, scalars)]
if (dtype is torch.float16 or dtype is torch.bfloat16):
expected = [e.to(dtype=dtype) for e in expected]
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes() or dtype == torch.bool) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
res = foreach_bin_op(tensors, scalars)
if dtype == torch.bool:
# see TODO[Fix scalar list]
self.assertEqual(res, [torch_bin_op(t.to(torch.float32), s) for t, s in zip(tensors, scalars)])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
# see TODO[Fix scalar list]
self.assertEqual(res, [e.to(dtype) for e in expected])
foreach_bin_op_(tensors, scalars)
self.assertEqual(tensors, res)
return
else:
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(res, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types() and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalars)
return
foreach_bin_op_(tensors, scalars)
if (dtype is torch.float16 or dtype is torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(tensors, expected, atol=1.e-3, rtol=self.dtype_precisions[dtype][0])
else:
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = 3 + 5j
expected = [torch_bin_op(t, scalar) for t in tensors]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
if dtype in torch.testing.get_all_fp_dtypes(include_half=True, include_bfloat16=True) and \
self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "value cannot be converted to type"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "value cannot be converted to type"):
foreach_bin_op(tensors, scalar)
return
res = foreach_bin_op(tensors, scalar)
self.assertEqual(res, expected)
if dtype not in [torch.complex64, torch.complex128]:
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
foreach_bin_op_(tensors, scalar)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [3 + 5j for _ in range(N)]
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
if dtype == torch.bool:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op_(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
foreach_bin_op(tensors, scalar)
return
with self.assertRaisesRegex(TypeError, "argument 'scalars' must be tuple of floats"):
res = foreach_bin_op(tensors, scalars)
with self.assertRaisesRegex(TypeError, "argument 'scalars' must be tuple of floats"):
foreach_bin_op_(tensors, scalars)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalar(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalar = True
if dtype == torch.bool:
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
return
if foreach_bin_op == torch._foreach_sub and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator"):
res = foreach_bin_op(tensors, scalar)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator"):
foreach_bin_op_(tensors, scalar)
elif foreach_bin_op == torch._foreach_sub and self.device_type == 'cuda':
res = foreach_bin_op(tensors, scalar)
self.assertEqual(res, foreach_bin_op(tensors, 1))
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
else:
expected = [torch_bin_op(t, scalar) for t in tensors]
res = foreach_bin_op(tensors, scalar)
# TODO[type promotion]: Fix once type promotion is enabled.
if dtype in torch.testing.integral_types() and self.device_type == 'cuda':
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
if foreach_bin_op == torch._foreach_div and self.device_type == "cpu":
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired "):
foreach_bin_op_(tensors, scalar)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, res)
else:
foreach_bin_op_(tensors, scalar)
self.assertEqual(tensors, expected)
@skipCUDAIfRocm
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalarlist(self, device, dtype):
for N in N_values:
for foreach_bin_op, foreach_bin_op_, torch_bin_op in zip(self.foreach_bin_ops,
self.foreach_bin_ops_,
self.torch_bin_ops):
tensors = self._get_test_data(device, dtype, N)
scalars = [True for _ in range(N)]
if dtype == torch.bool:
if self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
return
else:
if foreach_bin_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
foreach_bin_op(tensors, scalars)
else:
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired"):
foreach_bin_op_(tensors, scalars)
res = foreach_bin_op(tensors, scalars)
for r in res:
self.assertTrue(r.dtype == torch.float32)
else:
# we dont support bool and complex types on CUDA for now
if (dtype in torch.testing.get_all_complex_dtypes()) and self.device_type == 'cuda':
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op_(tensors, scalars)
with self.assertRaisesRegex(RuntimeError, "not implemented for"):
foreach_bin_op(tensors, scalars)
return
if foreach_bin_op == torch._foreach_sub:
if self.device_type == "cpu":
# see TODO[Fix scalar list]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [r.to(torch.float32) for r in [torch_bin_op(t, 1) for t in tensors]])
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the "):
foreach_bin_op_(tensors, scalars)
else:
self.assertEqual(res, [torch_bin_op(t, 1) for t in tensors])
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
else:
# see TODO[Fix scalar list]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [r.to(dtype) for r in [torch_bin_op(t, 1) for t in tensors]])
else:
self.assertEqual(res, [torch_bin_op(t, 1) for t in tensors])
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
else:
if self.device_type == "cpu":
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
res = foreach_bin_op(tensors, scalars)
# see TODO[Fix scalar list]
if dtype in torch.testing.integral_types():
self.assertEqual(res, [e.to(torch.float32) for e in expected])
else:
self.assertEqual(res, expected)
if dtype in torch.testing.integral_types():
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired "):
foreach_bin_op_(tensors, scalars)
else:
foreach_bin_op_(tensors, scalars)
self.assertEqual(tensors, expected)
else:
expected = [torch_bin_op(t, s) for t, s in zip(tensors, scalars)]
res = foreach_bin_op(tensors, scalars)
if dtype in torch.testing.integral_types():
self.assertEqual(res, [e.to(dtype) for e in expected])
else:
self.assertEqual(res, expected)
foreach_bin_op_(tensors, scalars)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_with_different_size_tensors(self, device, dtype):
if dtype == torch.bool:
return
tensors = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
expected = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
torch._foreach_add_(tensors, 1)
self.assertEqual(expected, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_overlapping_tensors(self, device, dtype):
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
expected = [torch.tensor([[[2, 2, 2]], [[2, 2, 2]]], dtype=dtype, device=device)]
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected[0] = expected[0].to(torch.int64).add(1)
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, expected)
def test_bin_op_scalar_with_different_tensor_dtypes(self, device):
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, 1))
#
# Ops with list
#
def test_bin_op_list_error_cases(self, device):
for bin_op, bin_op_ in zip(self.foreach_bin_ops, self.foreach_bin_ops_):
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
bin_op_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
bin_op_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
bin_op_(tensors1, tensors2)
# Different dtypes
tensors1 = [torch.zeros(10, 10, device=device, dtype=torch.float) for _ in range(10)]
tensors2 = [torch.ones(10, 10, device=device, dtype=torch.int) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."):
bin_op_(tensors1, tensors2)
# different devices
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0")
tensor2 = torch.ones(10, 10, device="cuda:1")
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
bin_op([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
bin_op_([tensor1], [tensor2])
# Corresponding tensors with different sizes
tensors1 = [torch.zeros(10, 10, device=device) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device) for _ in range(10)]
with self.assertRaisesRegex(RuntimeError, "Corresponding tensors in lists must have the same size"):
bin_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, r", got \[10, 10\] and \[11, 11\]"):
bin_op_(tensors1, tensors2)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list(self, device, dtype):
self._test_bin_op_list(device, dtype, torch._foreach_add, torch._foreach_add_, torch.add)
self._test_bin_op_list_alpha(device, dtype, torch._foreach_add, torch._foreach_add_, torch.add)
@dtypes(*torch.testing.get_all_dtypes())
def test_sub_list(self, device, dtype):
if dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with two bool"):
self._test_bin_op_list(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
with self.assertRaisesRegex(RuntimeError, "Subtraction, the `-` operator, with a bool tensor"):
self._test_bin_op_list_alpha(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
else:
self._test_bin_op_list(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
self._test_bin_op_list_alpha(device, dtype, torch._foreach_sub, torch._foreach_sub_, torch.sub)
@dtypes(*torch.testing.get_all_dtypes())
def test_mul_list(self, device, dtype):
self._test_bin_op_list(device, dtype, torch._foreach_mul, torch._foreach_mul_, torch.mul)
@dtypes(*torch.testing.get_all_dtypes())
def test_div_list(self, device, dtype):
if dtype in torch.testing.integral_types_and(torch.bool):
if self.device_type == 'cpu':
with self.assertRaisesRegex(RuntimeError, "result type Float can't be cast to the desired output type"):
self._test_bin_op_list(device, dtype, torch._foreach_div, torch._foreach_div_, torch.div)
else:
self.skipTest("Skipped! See https://github.com/pytorch/pytorch/issues/44489")
return
for N in N_values:
tensors1 = self._get_test_data(device, dtype, N)
if dtype in [torch.bfloat16, torch.bool, torch.float16]:
tensors2 = [torch.zeros(N, N, device=device, dtype=dtype).add(2) for _ in range(N)]
else:
tensors2 = self._get_test_data(device, dtype, N)
expected = [torch.div(tensors1[i], tensors2[i]) for i in range(N)]
res = torch._foreach_div(tensors1, tensors2)
torch._foreach_div_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(tensors1, res)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_different_sizes(self, device, dtype):
tensors1 = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
tensors2 = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
res = torch._foreach_add(tensors1, tensors2)
torch._foreach_add_(tensors1, tensors2)
self.assertEqual(res, tensors1)
self.assertEqual(res, [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@dtypes(*torch.testing.get_all_dtypes())
def test_add_list_slow_path(self, device, dtype):
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
res = torch._foreach_add([tensor1], [tensor2.t()])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
# non contiguous
tensor1 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
tensor2 = torch.randn(5, 2, 1, 3, device=device)[:, 0]
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
res = torch._foreach_add([tensor1], [tensor2])
torch._foreach_add_([tensor1], [tensor2])
self.assertEqual(res, [tensor1])
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()