-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlocalized_seg.m
245 lines (204 loc) · 7.82 KB
/
localized_seg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
% Localized Region Based Active Contour Segmentation:
%
% seg = localized_seg(I,init_mask,max_its,rad,alpha,method)
%
% Inputs: I 2D image
% init_mask Initialization (1 = foreground, 0 = bg)
% max_its Number of iterations to run segmentation for
% rad (optional) Localization Radius (in pixels)
% smaller = more local, bigger = more global
% alpha (optional) Weight of smoothing term
% higer = smoother
% method (optional) selects localized energy
% 1 = Chan-Vese Energy
% 2 = Yezzi Energy (usually works better)
%
% Outputs: seg Final segmentation mask (1=fg, 0=bg)
%
% Example:
% img = imread('tire.tif'); %-- load the image
% m = false(size(img)); %-- create initial mask
% m(28:157,37:176) = true;
% seg = localized_seg(img,m,150);
%
% Description: This code implements the paper: "Localizing Region Based
% Active Contours" By Lankton and Tannenbaum. In this work, typical
% region-based active contour energies are localized in order to handle
% images with non-homogeneous foregrounds and backgrounds.
%
% Coded by: Shawn Lankton (www.shawnlankton.com)
%------------------------------------------------------------------------
function seg = localized_seg(I,init_mask,max_its,rad,alpha,method,FigRefreshRate,display)
%-- default value for parameter alpha is .1
if(~exist('alpha','var'))
alpha = .2;
end
%-- default value for parameter method is 2
if(~exist('method','var'))
method = 2;
end
%-- default behavior is to display intermediate outputs
if(~exist('display','var'))
display = true;
end
if(~exist('FigRefreshRate','var'))
FigRefreshRate =20;
end
%-- Ensures image is 2D double matrix
I = im2graydouble(I);
%-- Default localization radius is 1/10 of average length
[dimy dimx] = size(I);
if(~exist('rad','var'))
rad = round((dimy+dimx)/(2*8));
if(display>0)
disp(['localiztion radius is: ' num2str(rad) ' pixels']);
end
end
%-- Create a signed distance map (SDF) from mask
phi = mask2phi(init_mask);
%--main loop
for its = 1:max_its % Note: no automatic convergence test
%-- get the curve's narrow band
idx = find(phi <= 1.2 & phi >= -1.2)';
[y x] = ind2sub(size(phi),idx);
%-- get windows for localized statistics
xneg = x-rad; xpos = x+rad; %get subscripts for local regions
yneg = y-rad; ypos = y+rad;
xneg(xneg<1)=1; yneg(yneg<1)=1; %check bounds
xpos(xpos>dimx)=dimx; ypos(ypos>dimy)=dimy;
%-- re-initialize u,v,Ain,Aout
u=zeros(size(idx)); v=zeros(size(idx));
Ain=zeros(size(idx)); Aout=zeros(size(idx));
%-- compute local stats
for i = 1:numel(idx) % for every point in the narrow band
img = I(yneg(i):ypos(i),xneg(i):xpos(i)); %sub image
P = phi(yneg(i):ypos(i),xneg(i):xpos(i)); %sub phi
upts = find(P<=0); %local interior
Ain(i) = length(upts)+eps;
u(i) = sum(img(upts))/Ain(i);
vpts = find(P>0); %local exterior
Aout(i) = length(vpts)+eps;
v(i) = sum(img(vpts))/Aout(i);
end
%-- get image-based forces
switch method %-choose which energy is localized
case 1, %-- CHAN VESE
F = -(u-v).*(2.*I(idx)-u-v);
otherwise, %-- YEZZI
F = -((u-v).*((I(idx)-u)./Ain+(I(idx)-v)./Aout));
end
%-- get forces from curvature penalty
curvature = get_curvature(phi,idx,x,y);
%-- gradient descent to minimize energy
dphidt = F./max(abs(F)) + alpha*curvature;
%-- maintain the CFL condition
dt = .45/(max(dphidt)+eps);
%-- evolve the curve
phi(idx) = phi(idx) + dt.*dphidt;
%-- Keep SDF smooth
phi = sussman(phi, .5);
%-- intermediate output
if((display>0)&&(mod(its,FigRefreshRate) == 0))
showCurveAndPhi(I,phi,its);
end
end
%-- final output
if(display)
showCurveAndPhi(I,phi,its);
end
%-- make mask from SDF
seg = phi<=0; %-- Get mask from levelset
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- AUXILIARY FUNCTIONS ----------------------------------------------
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- Displays the image with curve superimposed
function showCurveAndPhi(I, phi, i)
imshow(I,[]); hold on;
contour(phi, [0 0], 'g','LineWidth',4);
contour(phi, [0 0], 'k','LineWidth',2);
title(['Localized Region Based Active Contour Segmentation ',num2str(i) ' Iterations']); hold off;drawnow;
%-- converts a mask to a SDF
function phi = mask2phi(init_a)
phi=bwdist(init_a)-bwdist(1-init_a)+im2double(init_a)-.5;
%-- compute curvature along SDF
function curvature = get_curvature(phi,idx,x,y)
[dimy, dimx] = size(phi);
%-- get subscripts of neighbors
ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1;
%-- bounds checking
ym1(ym1<1) = 1; xm1(xm1<1) = 1;
yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx;
%-- get indexes for 8 neighbors
idup = sub2ind(size(phi),yp1,x);
iddn = sub2ind(size(phi),ym1,x);
idlt = sub2ind(size(phi),y,xm1);
idrt = sub2ind(size(phi),y,xp1);
idul = sub2ind(size(phi),yp1,xm1);
idur = sub2ind(size(phi),yp1,xp1);
iddl = sub2ind(size(phi),ym1,xm1);
iddr = sub2ind(size(phi),ym1,xp1);
%-- get central derivatives of SDF at x,y
phi_x = -phi(idlt)+phi(idrt);
phi_y = -phi(iddn)+phi(idup);
phi_xx = phi(idlt)-2*phi(idx)+phi(idrt);
phi_yy = phi(iddn)-2*phi(idx)+phi(idup);
phi_xy = -0.25*phi(iddl)-0.25*phi(idur)...
+0.25*phi(iddr)+0.25*phi(idul);
phi_x2 = phi_x.^2;
phi_y2 = phi_y.^2;
%-- compute curvature (Kappa)
curvature = ((phi_x2.*phi_yy + phi_y2.*phi_xx - 2*phi_x.*phi_y.*phi_xy)./...
(phi_x2 + phi_y2 +eps).^(3/2)).*(phi_x2 + phi_y2).^(1/2);
%-- Converts image to one channel (grayscale) double
function img = im2graydouble(img)
[dimy, dimx, c] = size(img);
if(isfloat(img)) % image is a double
if(c==3)
img = rgb2gray(uint8(img));
end
else % image is a int
if(c==3)
img = rgb2gray(img);
end
img = double(img);
end
%-- level set re-initialization by the sussman method
function D = sussman(D, dt)
% forward/backward differences
a = D - shiftR(D); % backward
b = shiftL(D) - D; % forward
c = D - shiftD(D); % backward
d = shiftU(D) - D; % forward
a_p = a; a_n = a; % a+ and a-
b_p = b; b_n = b;
c_p = c; c_n = c;
d_p = d; d_n = d;
a_p(a < 0) = 0;
a_n(a > 0) = 0;
b_p(b < 0) = 0;
b_n(b > 0) = 0;
c_p(c < 0) = 0;
c_n(c > 0) = 0;
d_p(d < 0) = 0;
d_n(d > 0) = 0;
dD = zeros(size(D));
D_neg_ind = find(D < 0);
D_pos_ind = find(D > 0);
dD(D_pos_ind) = sqrt(max(a_p(D_pos_ind).^2, b_n(D_pos_ind).^2) ...
+ max(c_p(D_pos_ind).^2, d_n(D_pos_ind).^2)) - 1;
dD(D_neg_ind) = sqrt(max(a_n(D_neg_ind).^2, b_p(D_neg_ind).^2) ...
+ max(c_n(D_neg_ind).^2, d_p(D_neg_ind).^2)) - 1;
D = D - dt .* sussman_sign(D) .* dD;
%-- whole matrix derivatives
function shift = shiftD(M)
shift = shiftR(M')';
function shift = shiftL(M)
shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ];
function shift = shiftR(M)
shift = [ M(:,1) M(:,1:size(M,2)-1) ];
function shift = shiftU(M)
shift = shiftL(M')';
function S = sussman_sign(D)
S = D ./ sqrt(D.^2 + 1);