-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRNN.py
246 lines (196 loc) · 7.86 KB
/
RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import scipy.io as sc
import tensorflow as tf
from sklearn import preprocessing
from sklearn.metrics import classification_report
# this function is used to transfer one column label to one hot label
def one_hot(y_):
# Function to encode output labels from number indexes
# e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]
y_ = y_.reshape(len(y_)).astype(int)
n_values = np.max(y_) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)]
"""
This function is used to create a RNN
Input: X, weights, biases, number of layers, number of inputs, number of hidden layers
"""
def rnn(X, weights, biases, n_layers, n_inputs, n_hidden4_units):
# hidden layer for input to cell
########################################
# transpose the inputs shape from
X = tf.reshape(X, [-1, int(n_inputs)])
# into hidden
X_hidd1 = tf.sigmoid(tf.matmul(X, weights['in']) + biases['in'])
X_hidd1 = tf.matmul(X_hidd1, weights['hidd2']) + biases['hidd2']
if n_layers == 5:
X_hidd1 = tf.matmul(X_hidd1, weights['hidd3']) + biases['hidd3']
elif n_layers == 6:
X_hidd1 = tf.matmul(X_hidd1, weights['hidd3']) + biases['hidd3']
X_hidd1 = tf.matmul(X_hidd1, weights['hidd4']) + biases['hidd4']
X_in = tf.reshape(X_hidd1, [-1, n_steps, n_hidden4_units])
# cell
##########################################
# basic LSTM Cell.
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden4_units, forget_bias=1, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden4_units, forget_bias=1, state_is_tuple=True)
lstm_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
# lstm cell is divided into two parts (c_state, h_state)
init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)
outputs = tf.unstack(tf.transpose(outputs, [1, 0, 2])) # states is the last outputs
results = tf.matmul(outputs[-1], weights['out']) + biases['out']
return results
# ---------------- EEG data ----------------
feature = sc.loadmat("S1_nolabel6.mat")
all = feature['S1_nolabel6']
all = all[0:28000]
data_size = all.shape[0]
np.random.shuffle(all) # shuffle all the data
n_fea = 64
n_classes = 6
# extract the feature columns
feature_all = all[:, 0:n_fea]
# minus Direct Current, DC=4200 which is determined by the EEG equipment.
feature_all = feature_all - 4200
# z-score scaling
feature_normalized = preprocessing.scale(feature_all)
label_all = all[:, n_fea:n_fea+1]
all = np.hstack((feature_normalized, label_all))
# print(all.shape)
# --------------- RFID data --------------------
# feature = sc.loadmat("rssi_nonmix_all.mat")
# all = feature['rssi_nonmix_all']
#
# n_fea = 12
# n_classes = 22
# data_size = all.shape[0]
# np.random.shuffle(all)
# # extract the feature columns
# feature_all = all[:, 0:n_fea]
#
# # z-score
# feature_normalized = preprocessing.scale(feature_all)
# label_all = all[:, n_fea:n_fea + 1]
# all = np.hstack((feature_normalized, label_all))
"""
This data set will take long to run
"""
# -------------- PAMAP2 data ------------------------
# feature = sc.loadmat("AR_6p_8c.mat")
# all = feature['AR_6p_8c']
# all = all[0:200000]
# np.random.shuffle(all)
#
# all = all[:10000] # this is for fast run, comment this line when doing actual run
#
# n_fea = 48
# n_classes = 8
# data_size = all.shape[0]
#
# feature_all = all[:, 0:n_fea]
#
# feature_normalized = preprocessing.scale(feature_all)
# label_all = all[:, -1:]
# all = np.hstack((feature_normalized, label_all))
# use the first subject as testing subject
train_data = all[0:int(data_size * 0.75)]
test_data = all[int(data_size * 0.75):data_size]
# shuffle all the train and test data
np.random.shuffle(train_data)
np.random.shuffle(test_data)
n_steps = 1
# get training and test batches
feature_training = train_data[:, 0:n_fea]
feature_training = feature_training.reshape([int(data_size * 0.75), n_steps, n_fea // n_steps])
feature_testing = test_data[:, 0:n_fea]
feature_testing = feature_testing.reshape([int(data_size * 0.25), n_steps, n_fea // n_steps])
label_training = train_data[:, n_fea]
label_training = one_hot(label_training)
label_testing = test_data[:, n_fea]
label_testing = one_hot(label_testing)
# batch split
a = feature_training
b = feature_testing
batch_size = int(data_size * 0.25)
train_fea = []
n_group = 3
for i in range(n_group):
f = a[(0 + batch_size * i):(batch_size + batch_size * i)]
train_fea.append(f)
# print(train_fea[0].shape)
train_label = []
for i in range(n_group):
f = label_training[(0 + batch_size * i):(batch_size + batch_size * i), :]
train_label.append(f)
# print(train_label[0].shape)
def rnn_run(lr, lam, n_layers, nodes):
tf.reset_default_graph()
# hyperparameters
n_inputs = n_fea / n_steps
# n_steps = # time steps
n_hidden1_units = nodes # neurons in hidden layer
n_hidden2_units = nodes
n_hidden3_units = nodes
n_hidden4_units = nodes
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs], name="x")
y = tf.placeholder(tf.float32, [None, n_classes])
# Define weights
weights = {
# (28, 128)
'in': tf.Variable(tf.random_normal([int(n_inputs), int(n_hidden1_units)]), trainable=True),
'a': tf.Variable(tf.random_normal([n_hidden1_units, n_hidden1_units]), trainable=True),
# (128,128)
'hidd2': tf.Variable(tf.random_normal([n_hidden1_units, n_hidden2_units])),
'hidd3': tf.Variable(tf.random_normal([n_hidden2_units, n_hidden3_units])),
'hidd4': tf.Variable(tf.random_normal([n_hidden3_units, n_hidden4_units])),
# (128, 10)
'out': tf.Variable(tf.random_normal([n_hidden4_units, n_classes]), trainable=True),
}
biases = {
# (128, )
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden1_units])),
# (128,)
'hidd2': tf.Variable(tf.constant(0.1, shape=[n_hidden2_units])),
'hidd3': tf.Variable(tf.constant(0.1, shape=[n_hidden3_units])),
'hidd4': tf.Variable(tf.constant(0.1, shape=[n_hidden4_units])),
# (10, )
'out': tf.Variable(tf.constant(0.1, shape=[n_classes]), trainable=True)
}
pred = rnn(x, weights, biases, n_layers, n_inputs, n_hidden4_units)
# L2 loss prevents this overkill neural network to overfit the data
l2 = lam * sum(tf.nn.l2_loss(tf_var) for tf_var in
tf.trainable_variables())
# Softmax loss
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) + l2
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# calculate the accuracy
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
H = []
with tf.Session(config=config) as sess:
sess.run(init)
step = 0
while step < 2000: # 2000 iterations
for i in range(n_group):
sess.run(train_op, feed_dict={
x: train_fea[i],
y: train_label[i],
})
if step % 500 == 0:
pp = sess.run(pred, feed_dict={x: b, y: label_testing})
hh = sess.run(accuracy, feed_dict={
x: b,
y: label_testing,
})
H.append(hh)
print("don't worry, I'm running!")
step += 1
print("lr :", lr, ", lambda:", lam, "number of layers: ", n_layers, "number of nodes: ", nodes, ",Acc max",
max(H))
# print the classification report
print(classification_report(np.argmax(pp, axis=1), np.argmax(label_testing, axis=1), digits=4))
return max(H)