forked from TwistedW/tensorflow-GANs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAE.py
302 lines (242 loc) · 13.4 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#-*- coding: utf-8 -*-
from __future__ import division
import os
import time
import tensorflow as tf
import numpy as np
from ops import *
from utils import *
import prior_factory as prior
class VAE(object):
def __init__(self, sess, epoch, batch_size, z_dim, dataset_name, checkpoint_dir, result_dir, log_dir):
self.sess = sess
self.dataset_name = dataset_name
self.checkpoint_dir = checkpoint_dir
self.result_dir = result_dir
self.log_dir = log_dir
self.epoch = epoch
self.batch_size = batch_size
self.model_name = "VAE" # name for checkpoint
if dataset_name == 'mnist' or dataset_name == 'fashion-mnist':
# parameters
self.input_height = 28
self.input_width = 28
self.output_height = 28
self.output_width = 28
self.z_dim = z_dim # dimension of noise-vector
self.c_dim = 1
# train
self.learning_rate = 0.0002
self.beta1 = 0.5
# test
self.sample_num = 64 # number of generated images to be saved
# load mnist
self.data_X, self.data_y = load_mnist(self.dataset_name)
# get number of batches for a single epoch
self.num_batches = len(self.data_X) // self.batch_size
else:
raise NotImplementedError
# Gaussian Encoder 高斯编码器
def encoder(self, x, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC62*4
with tf.variable_scope("encoder", reuse=reuse):
# 经过这一步卷积后,(64,28,28,1)-->(64,14,14,64) 具体的计算为(28-2)/2+1
net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name='en_conv1'))
# 经过这一步卷积后,(64,14,14,64)-->(64,7,7,128) 具体的计算为(14-2)/2+1
net = lrelu(bn(conv2d(net, 128, 4, 4, 2, 2, name='en_conv2'), is_training=is_training, scope='en_bn2'))
# 经过数组重构后,(64,7,7,128)-->(64,6272)
net = tf.reshape(net, [self.batch_size, -1])
# 经过线性处理后将矩阵,(64,6272)-->(64,1024)
net = lrelu(bn(linear(net, 1024, scope='en_fc3'), is_training=is_training, scope='en_bn3'))
# 经过线性处理后 (64,1024)-->(64,124)
gaussian_params = linear(net, 2 * self.z_dim, scope='en_fc4')
# The mean parameter is unconstrained 将输出分为两块,z_mean和z_log_var,就是高斯分布的均值和标准差
# 分出的前(64,62)代表均值, 后(64,62)处理后代表标准差
mean = gaussian_params[:, :self.z_dim]
# The standard deviation must be positive. Parametrize with a softplus and
# add a small epsilon for numerical stability
# 标准差必须是正值。 用softplus参数化并为数值稳定性添加一个小的epsilon, softplus为y=log(1+ex)
stddev = 1e-6 + tf.nn.softplus(gaussian_params[:, self.z_dim:])
return mean, stddev
# Bernoulli decoder 伯努利解码器
def decoder(self, z, is_training=True, reuse=False):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
with tf.variable_scope("decoder", reuse=reuse):
# 经过线性处理后将矩阵,(64,62)-->(64,1024)
net = tf.nn.relu(bn(linear(z, 1024, scope='de_fc1'), is_training=is_training, scope='de_bn1'))
# 经过线性处理后将矩阵,(64,1024)-->(64,6272), 6272=128*7*7
net = tf.nn.relu(bn(linear(net, 128 * 7 * 7, scope='de_fc2'), is_training=is_training, scope='de_bn2'))
# 经过重构后,形状变为(64,7,7,128)
net = tf.reshape(net, [self.batch_size, 7, 7, 128])
# 经过deconv2d,(64,7,7,128)-->(64,14,14,128)
net = tf.nn.relu(
bn(deconv2d(net, [self.batch_size, 14, 14, 64], 4, 4, 2, 2, name='de_dc3'), is_training=is_training,
scope='de_bn3'))
# 经过deconv2d,(64,14,14,128)-->(64,28,28,1),将值处理用sigmoid处理至(0,1)之间,`y = 1 / (1 + exp(-x))`
out = tf.nn.sigmoid(deconv2d(net, [self.batch_size, 28, 28, 1], 4, 4, 2, 2, name='de_dc4'))
return out
# 建立VAE模型,此函数非常重要
def build_model(self):
# some parameters
image_dims = [self.input_height, self.input_width, self.c_dim]
bs = self.batch_size
""" Graph Input """
# images
self.inputs = tf.placeholder(tf.float32, [bs] + image_dims, name='real_images')
# noises
self.z = tf.placeholder(tf.float32, [bs, self.z_dim], name='z')
""" Loss Function """
# encoding
self.mu, sigma = self.encoder(self.inputs, is_training=True, reuse=False)
# sampling by re-parameterization technique
# tf.random_normal 从正态分布输出随机值, sigma乘上随机值后将服从正态分布,抽空博客仔细说一下
z = self.mu + sigma * tf.random_normal(tf.shape(self.mu), 0, 1, dtype=tf.float32)
# decoding
out = self.decoder(z, is_training=True, reuse=False)
self.out = tf.clip_by_value(out, 1e-8, 1 - 1e-8)
# loss
marginal_likelihood = tf.reduce_sum(self.inputs * tf.log(self.out) + (1 - self.inputs) * tf.log(1 - self.out),
[1, 2])
# 在我写的Word中有对KL实现的讲解
KL_divergence = 0.5 * tf.reduce_sum(tf.square(self.mu) + tf.square(sigma) - tf.log(1e-8 + tf.square(sigma)) - 1,
[1])
self.neg_loglikelihood = -tf.reduce_mean(marginal_likelihood)
self.KL_divergence = tf.reduce_mean(KL_divergence)
ELBO = -self.neg_loglikelihood - self.KL_divergence
self.loss = -ELBO
""" Training """
# optimizers 训练优化loss函数,依旧采用Adam优化器
t_vars = tf.trainable_variables()
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.optim = tf.train.AdamOptimizer(self.learning_rate*5, beta1=self.beta1) \
.minimize(self.loss, var_list=t_vars)
"""" Testing """
# for test 由噪声生成一张图片
self.fake_images = self.decoder(self.z, is_training=False, reuse=True)
""" Summary """
nll_sum = tf.summary.scalar("nll", self.neg_loglikelihood)
kl_sum = tf.summary.scalar("kl", self.KL_divergence)
loss_sum = tf.summary.scalar("loss", self.loss)
# final summary operations
self.merged_summary_op = tf.summary.merge_all()
def train(self):
# initialize all variables
tf.global_variables_initializer().run()
# graph inputs for visualize training results
# 创建高斯分布z,均值为0,方差为1
self.sample_z = prior.gaussian(self.batch_size, self.z_dim)
# saver to save model
self.saver = tf.train.Saver()
# summary writer
self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_name, self.sess.graph)
# restore check-point if it exits
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
start_epoch = (int)(checkpoint_counter / self.num_batches)
start_batch_id = checkpoint_counter - start_epoch * self.num_batches
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
start_epoch = 0
start_batch_id = 0
counter = 1
print(" [!] Load failed...")
# loop for epoch
start_time = time.time()
for epoch in range(start_epoch, self.epoch):
# get batch data
for idx in range(start_batch_id, self.num_batches):
batch_images = self.data_X[idx*self.batch_size:(idx+1)*self.batch_size]
# 创建高斯分布z,均值为0,方差为1
batch_z = prior.gaussian(self.batch_size, self.z_dim)
# update autoencoder
_, summary_str, loss, nll_loss, kl_loss = self.sess.run([self.optim, self.merged_summary_op, self.loss,
self.neg_loglikelihood, self.KL_divergence],
feed_dict={self.inputs: batch_images, self.z: batch_z})
self.writer.add_summary(summary_str, counter)
# display training status
counter += 1
if np.mod(counter, 50) == 0:
print("Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.8f, nll: %.8f, kl: %.8f" \
% (epoch, idx, self.num_batches, time.time() - start_time, loss, nll_loss, kl_loss))
# save training results for every 300 steps 训练300步保存一张生成图片
if np.mod(counter, 300) == 0:
samples = self.sess.run(self.fake_images,
feed_dict={self.z: self.sample_z})
tot_num_samples = min(self.sample_num, self.batch_size)
manifold_h = int(np.floor(np.sqrt(tot_num_samples)))
manifold_w = int(np.floor(np.sqrt(tot_num_samples)))
save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w],
'./' + check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name +
'_train_{:02d}_{:04d}.png'.format(epoch, idx))
# After an epoch, start_batch_id is set to zero
# non-zero value is only for the first epoch after loading pre-trained model
start_batch_id = 0
# save model
self.save(self.checkpoint_dir, counter)
# show temporal results
self.visualize_results(epoch)
# save model for final step
self.save(self.checkpoint_dir, counter)
# 用于可视化epoch后输出图片
def visualize_results(self, epoch):
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
""" random condition, random noise """
z_sample = prior.gaussian(self.batch_size, self.z_dim)
samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample})
save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
check_folder(
self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch +
'_test_all_classes.png')
# 对于噪声向量维度为2的时候,模型可以理解为一个分类状况,此时可以用散点图表示出来各类之间的分类情况
# 需要注意的是此时的z_dim=2
""" learned manifold """
if self.z_dim == 2:
assert self.z_dim == 2
z_tot = None
id_tot = None
for idx in range(0, 100):
#randomly sampling
id = np.random.randint(0, self.num_batches)
batch_images = self.data_X[id * self.batch_size:(id + 1) * self.batch_size]
# 用于记录图片对应的标签用于类别显示
batch_labels = self.data_y[id * self.batch_size:(id + 1) * self.batch_size]
z = self.sess.run(self.mu, feed_dict={self.inputs: batch_images})
if idx == 0:
z_tot = z
id_tot = batch_labels
else:
z_tot = np.concatenate((z_tot, z), axis=0)
id_tot = np.concatenate((id_tot, batch_labels), axis=0)
save_scattered_image(z_tot, id_tot, -4, 4, name=check_folder(
self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_learned_manifold.png')
@property
# 加载创建固定模型下的路径,本处为VAE下的训练
def model_dir(self):
return "{}_{}_{}_{}".format(
self.model_name, self.dataset_name,
self.batch_size, self.z_dim)
# 本函数的目的是在于保存训练模型后的checkpoint
def save(self, checkpoint_dir, step):
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,os.path.join(checkpoint_dir, self.model_name+'.model'), global_step=step)
# 本函数的意义在于读取训练好的模型参数的checkpoint
def load(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0