-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathRainSnow.html
471 lines (427 loc) · 15.3 KB
/
RainSnow.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Document</title>
<style>
#canvas {
background-color: black;
height: 800px;
width: 800px;
}
</style>
</head>
<body>
<div id="canvas"></div>
<script type="importmap">
{
"imports": {
"three": "../node_modules/three/build/three.module.js",
"three/addons/": "../node_modules/three/examples/jsm/utils/"
}
}
</script>
<script type="module">
import * as THREE from '../node_modules/three/build/three.module.js';
import ThreeBase from './ThreeBase.js';
import * as BufferGeometryUtils from 'three/addons/BufferGeometryUtils.js';
class MyThree extends ThreeBase {
constructor() {
super();
this.initCameraPos = [-18, 12, 17];
this.vector = new THREE.Vector2();
this.isGUI = true;
this.dataObj = {
weather: 'rain',
rainSpeed: 3.0,
fogSpeed: 1.0,
fogOpacity: 1.0
};
this.guiSettings = [
{ type: 'select', key: 'weather', options: ['rain', 'snow', 'fog'] },
{
type: 'number',
key: 'rainSpeed',
min: 1.0,
max: 10.0
},
{
type: 'number',
key: 'fogSpeed',
min: 1.0,
max: 10.0
},
{
type: 'number',
key: 'fogOpacity',
min: 0.0,
max: 3.0
}
];
}
addFrameBuffer() {
const dpr = window.devicePixelRatio;
const width = this.container.offsetWidth;
const height = this.container.offsetHeight;
const sceneOrtho = new THREE.Scene();
this.sceneOrtho = sceneOrtho;
const cameraOrtho = new THREE.OrthographicCamera(
-width / 2,
width / 2,
height / 2,
-height / 2,
1,
10
);
cameraOrtho.position.z = 10;
cameraOrtho.left = -width / 2;
cameraOrtho.right = width / 2;
cameraOrtho.top = height / 2;
cameraOrtho.bottom = -height / 2;
this.cameraOrtho = cameraOrtho;
this.texture = new THREE.FramebufferTexture(width * dpr, height * dpr);
const g = new THREE.PlaneGeometry(width * dpr, height * dpr);
{
const rainMaterial = new THREE.ShaderMaterial({
transparent: true,
uniforms: {
rainSpeed: { value: 3.0 },
iTime: { value: 1.0 },
rainAngle: { value: -0.1 }
},
vertexShader: `
varying vec2 vUv;
void main(){
vUv=uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: `//https://www.shadertoy.com/view/td2yRD
varying vec2 vUv;
uniform float iTime;//随时间变化
uniform float rainSpeed;//下雨速度
uniform float rainAngle;//下雨倾斜角度
float PI = 3.1415926;
//随机数
float random(in vec2 uv) {
return fract(sin(dot(uv.xy, vec2(12.9898, 78.233))) *
43758.5453123);
}
//噪声函数
float noise(in vec2 uv) {
vec2 i = floor(uv);
vec2 f = fract(uv);
f = f * f * (3. - 2. * f);
float lb = random(i + vec2(0., 0.));
float rb = random(i + vec2(1., 0.));
float lt = random(i + vec2(0., 1.));
float rt = random(i + vec2(1., 1.));
return mix(mix(lb, rb, f.x), mix(lt, rt, f.x), f.y);
}
//下雨效果
float rain(vec2 uv) {
float travelTime = (iTime * 0.2) + 0.1;
vec2 tiling = vec2(1., .01);
vec2 offset = vec2(travelTime * 0.5 + uv.x * 0.2, travelTime * 0.2);
vec2 st = uv * tiling + offset;
float rain = 0.1;
float f = fract(noise(st * 200.5) * noise(st * 125.5) * rainSpeed);
f = clamp(pow(abs(f), 15.0) * 1.5 * (rain * rain * 125.0), 0.0, 0.25);
return f;
}
//旋转角度
mat2 rotate2d(float angle) {
return mat2(cos(angle), -sin(angle), sin(angle), cos(angle));
}
void main() {
mat2 a = rotate2d(rainAngle * PI);
float rain = rain(vUv * a);
if(rain <= 0.0) {
discard;
return;
}
vec3 col = vec3(1.0);
gl_FragColor = vec4(col, rain);
}
`
});
const snowMaterial = new THREE.ShaderMaterial({
transparent: true,
uniforms: {
iTime: { value: 1.0 }
},
vertexShader: `
varying vec2 vUv;
void main(){
vUv=uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: `//https://www.shadertoy.com/view/Mdt3Df
varying vec2 vUv;
uniform float iTime;
void main() {
float snow = 0.0;
for(int k = 0; k < 6; k++) {
for(int i = 0; i < 12; i++) {
float cellSize = 2.0 + (float(i) * 3.0);
float downSpeed = 0.3 + (sin(iTime * 0.4 + float(k + i * 20)) + 1.0) * 0.00008;
vec2 uv = vUv + vec2(0.01 * sin((iTime + float(k * 6185)) * 0.6 + float(i)) * (5.0 / float(i)), downSpeed * (iTime + float(k * 1352)) * (1.0 / float(i)));
vec2 uvStep = (ceil((uv) * cellSize - vec2(0.5, 0.5)) / cellSize);
float x = fract(sin(dot(uvStep.xy, vec2(12.9898 + float(k) * 12.0, 78.233 + float(k) * 315.156))) * 43758.5453 + float(k) * 12.0) - 0.5;
float y = fract(sin(dot(uvStep.xy, vec2(62.2364 + float(k) * 23.0, 94.674 + float(k) * 95.0))) * 62159.8432 + float(k) * 12.0) - 0.5;
float randomMagnitude1 = sin(iTime * 2.5) * 0.7 / cellSize;
float randomMagnitude2 = cos(iTime * 2.5) * 0.7 / cellSize;
float d = 5.0 * distance((uvStep.xy + vec2(x * sin(y), y) * randomMagnitude1 + vec2(y, x) * randomMagnitude2), uv.xy);
float omiVal = fract(sin(dot(uvStep.xy, vec2(32.4691, 94.615))) * 31572.1684);
if(omiVal < 0.08 ? true : false) {
float newd = (x + 1.0) * 0.4 * clamp(1.9 - d * (15.0 + (x * 6.3)) * (cellSize / 1.4), 0.0, 1.0);
snow += newd;
}
}
}
gl_FragColor = vec4(1.0, 1.0, 1.0, snow);
}
`
});
const fogMaterial = new THREE.ShaderMaterial({
transparent: true,
uniforms: {
iTime: { value: 1.0 },
fogOpacity: { value: 1.0 },
fogSpeed: { value: 1.0 }
},
vertexShader: `
varying vec2 vUv;
void main(){
vUv=uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: `//https://www.shadertoy.com/view/XtfSW4
float cloudDensity = 1.0; // overall density [0,1]
float noisiness = 0.35; // overall strength of the noise effect [0,1]
float speed = 0.1; // controls the animation speed [0, 0.1 ish)
float cloudHeight = 0.5; // (inverse) height of the input gradient [0,...)
uniform float iTime;
uniform float fogSpeed;
uniform float fogOpacity;
varying vec2 vUv;
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
/// Cloud stuff:
const float maximum = 1.0/1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 + 1.0/5.0 + 1.0/6.0 + 1.0/7.0 + 1.0/8.0;
// Fractal Brownian motion, or something that passes for it anyway: range [-1, 1]
float fBm(vec3 uv)
{
float sum = 0.0;
for (int i = 0; i < 8; ++i) {
float f = float(i+1);
sum += snoise(uv*f) / f;
}
return sum / maximum;
}
// Simple vertical gradient:
float gradient(vec2 uv) {
return (1.0 - uv.y * uv.y * cloudHeight);
}
void main() {
vec2 uv = vUv;
vec3 p = vec3(uv, iTime * speed);
vec3 offset = vec3(sin(iTime * fogSpeed*3.0), sin(iTime * fogSpeed), sin(iTime * fogSpeed*2.0));
vec2 duv = vec2(fBm(p), fBm(p + offset)) * noisiness;
float q = gradient(uv + duv) * cloudDensity;
if(q <= 0.0) {
discard;
return;
}
gl_FragColor = vec4(vec3(1.0), q * fogOpacity);
}`
});
this.snowMaterial = snowMaterial;
this.rainMaterial = rainMaterial;
this.fogMaterial = fogMaterial;
this.material = rainMaterial;
// this.material = new THREE.MeshBasicMaterial({
// color: 0xff0000,
// transparent: 0,
// opacity: 0.5
// });
const mesh = new THREE.Mesh(g, this.material);
mesh.position.set(0, 0, 1);
sceneOrtho.add(mesh);
this.weatherMesh = mesh;
}
{
const mesh = new THREE.Mesh(
g,
new THREE.MeshBasicMaterial({
map: this.texture,
transparent: true
})
);
mesh.position.set(0, 0, 0);
sceneOrtho.add(mesh);
}
}
addLight() {
const light = new THREE.AmbientLight(0xffffff, 0.6); // soft white light
this.scene.add(light);
const size = 20;
const dirLight = new THREE.DirectionalLight(0x0000ff, 3);
dirLight.position.set(size, size, size);
dirLight.castShadow = true;
dirLight.shadow.camera.top = size * 2;
dirLight.shadow.camera.bottom = -size * 2;
dirLight.shadow.camera.left = -size * 2;
dirLight.shadow.camera.right = size * 2;
dirLight.shadow.camera.near = 1;
dirLight.shadow.camera.far = size * 4;
dirLight.shadow.mapSize.set(1024, 1024);
this.scene.add(dirLight);
}
createChart() {
this.renderer.autoClear = false;
this.addFrameBuffer();
this.addLight();
this.scene.background = new THREE.Color('#00008B');
{
const mesh = new THREE.Mesh(
new THREE.PlaneGeometry(20, 20),
new THREE.MeshStandardMaterial({ color: 0xffffff, depthWrite: false })
);
mesh.rotation.x = -Math.PI / 2;
mesh.receiveShadow = true;
this.scene.add(mesh);
}
{
const tex = new THREE.TextureLoader().load(`./assets/image.jpg`);
tex.wrapS = THREE.RepeatWrapping;
tex.wrapT = THREE.RepeatWrapping;
const material = new THREE.MeshStandardMaterial({
map: tex
});
this.geometries = [];
const helper = new THREE.Object3D();
for (let i = 0; i < 50; i++) {
const h = Math.round(Math.random() * 3) + 1;
const x = Math.round(Math.random() * 8);
const y = Math.round(Math.random() * 8);
helper.position.set((x % 2 ? -1 : 1) * x, h * 0.5, (y % 2 ? -1 : 1) * y);
const geometry = new THREE.BoxGeometry(1, h, 1);
helper.updateWorldMatrix(true, false);
geometry.applyMatrix4(helper.matrixWorld);
this.geometries.push(geometry);
}
const mergedGeometry = BufferGeometryUtils.mergeGeometries(this.geometries, false);
const cube = new THREE.Mesh(mergedGeometry, material);
cube.receiveShadow = true;
cube.castShadow = true;
this.scene.add(cube);
}
}
onGuiAction() {
if (this.dataObj.weather == 'snow') {
this.weatherMesh.material = this.snowMaterial;
this.material = this.snowMaterial;
} else if (this.dataObj.weather == 'rain') {
this.weatherMesh.material = this.rainMaterial;
this.rainMaterial.uniforms.rainSpeed.value = this.dataObj.rainSpeed;
this.material = this.rainMaterial;
} else if (this.dataObj.weather == 'fog') {
this.weatherMesh.material = this.fogMaterial;
this.fogMaterial.uniforms.fogOpacity.value = this.dataObj.fogOpacity;
this.fogMaterial.uniforms.fogSpeed.value = this.dataObj.fogSpeed;
this.material = this.fogMaterial;
}
}
animate() {
this.renderer.clear();
this.renderer.render(this.scene, this.camera);
if (this.texture) {
this.renderer.clearDepth();
this.renderer.copyFramebufferToTexture(this.vector, this.texture);
if (this.material) {
this.material.uniforms.iTime.value += 0.01;
}
this.renderer.render(this.sceneOrtho, this.cameraOrtho);
}
this.threeAnim = requestAnimationFrame(this.animate.bind(this));
}
}
var myThree = new MyThree();
window.myThree = myThree;
myThree.initThree(document.getElementById('canvas'));
myThree.createChart({});
</script>
</body>
</html>