-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathcompute_metrics.m
146 lines (115 loc) · 4.4 KB
/
compute_metrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
% This code can be used to compute values of selected metrics for selected
% algorithms on selected image pair
%
% VIFB is the first benchmark in the field of visible-infrared image fsuion, and also the first benchmark in
% the field of image fusion.
%
% Note: Please change the path in line 30 to your own path before running
%
% If you use this code, please site the following paper:
%
% X. Zhang, P. Ye, G. Xiao. VIFB:A Visible and Infrared Benchmark. In
% Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
% Recognition Workshops, 2020.
%
% Thanks a lot!
%
% For more information, please see https://github.com/xingchenzhang/VIFB
%
% Contact: [email protected]
close all
clear
clc
warning off all;
addpath('.\metrics');
addpath('.\util');
addpath('.\methods');
path = 'Your own path\VIFB\output';
fusedPath = [path '\fused_images\'];
outputPath = [path '\evaluation_metrics\'];
outputPathSingle = [path '\evaluation_metrics_single\'];
if ~exist(outputPath,'dir')
mkdir(outputPath);
end
if ~exist(outputPathSingle,'dir')
mkdir(outputPathSingle);
end
imgsVI = configImgsVI;
imgsIR = configImgsIR;
methods = configMethods;
metrics = configMetrics;
numImgsVI = length(imgsVI);
numImgsIR = length(imgsIR);
numMethods = length(methods);
numMetrics = length(metrics);
% output information
fid = fopen(strcat(path, '\information.txt'),'w');
fprintf(fid,'%15s\r\n','The image paris are:');
for i=1:numImgsVI
fprintf(fid ,'%15s\r\n',imgsVI{i}.name);
end
fprintf(fid,'%15s\r\n','');
fprintf(fid,'%15s\r\n','The methods are:');
for i=1:numMethods
fprintf(fid,'%15s\r\n', methods{i}.name);
end
fprintf(fid,'%15s\r\n','');
fprintf(fid,'%15s\r\n','The metrics are:');
for i=1:numMetrics
fprintf(fid,'%15s\r\n', metrics{i}.name);
end
fclose(fid);
visualization = 0;
resultsMetrics = zeros(numImgsVI, numMethods, numMetrics);
for idxMethod = 1:numMethods
m = methods{idxMethod};
for idxImgs = 1:length(imgsVI)
sVI = imgsVI{idxImgs};
sIR = imgsIR{idxImgs};
sVI.img = strcat(sVI.path,sVI.name, '.',sVI.ext);
sIR.img = strcat(sIR.path,sIR.name, '.',sIR.ext);
imgVI = imread(sVI.img);
imgIR = imread(sIR.img);
[imgH_VI,imgW_VI,chVI] = size(imgVI);
[imgH_IR,imgW_IR,chIR] = size(imgIR);
for idxMetrics = 1:numMetrics
sMetrics = metrics{idxMetrics};
fusedName = [fusedPath sVI.name '_' m.name '.jpg'];
if exist([fusedPath sVI.name '_' m.name '.jpg'])
sFused = imread(fusedName);
% check whether the result exists
if exist(strcat(outputPathSingle,sVI.name, '_', m.name,'_',sMetrics.name ,'.txt'))
A = importdata(strcat(outputPathSingle,sVI.name, '_', m.name,'_',sMetrics.name ,'.txt'));
resultsMetrics(idxImgs, idxMethod, idxMetrics) = A;
continue;
end
disp([num2str(idxMethod) '_' m.name ', ' num2str(idxImgs) '_' sVI.name ', ' num2str(idxMetrics) '_' sMetrics.name])
funcName = ['res = metrics' sMetrics.name '(imgVI, imgIR, sFused);'];
disp(funcName)
try
cd(['./metrics/']);
addpath(genpath('./'))
eval(funcName);
catch err
disp('error');
rmpath(genpath('./'))
cd('../../')
continue;
end
resultsMetrics(idxImgs, idxMethod, idxMetrics) = res;
outputFileSingle = strcat(outputPathSingle,sVI.name, '_', m.name,'_',sMetrics.name ,'.txt');
dlmwrite(outputFileSingle,res)
cd('../');
else
str=['The fused image ' fusedName ' does not exists, please check'];
disp(str)
end
end
end
end
outputFile = strcat(outputPath, 'evaluationMetrics.mat');
save(outputFile,'resultsMetrics');
% compute the average value of each metric on all image pairs
resultsMetricsAverageImg = nanmean(resultsMetrics,1);
outputFileAverage = strcat(outputPath, 'evaluationMetricsAverageImg.mat');
save(outputFileAverage,'resultsMetricsAverageImg');