-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathchat.py
382 lines (344 loc) · 13.3 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import time
import traceback
import uuid
from functools import partial
from typing import AsyncIterator
import anyio
import vllm
from fastapi import APIRouter, Depends, status
from fastapi import HTTPException, Request
from loguru import logger
from openai.types.chat import (
ChatCompletionMessage,
ChatCompletion,
ChatCompletionChunk,
)
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
from openai.types.chat.chat_completion_chunk import (
ChoiceDelta,
ChoiceDeltaFunctionCall,
ChoiceDeltaToolCall
)
from openai.types.chat.chat_completion_message import FunctionCall
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall
from openai.types.completion_usage import CompletionUsage
from sse_starlette import EventSourceResponse
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from api.common import dictify, model_validate
from api.engine.vllm_engine import VllmEngine
from api.models import LLM_ENGINE
from api.protocol import Role, ChatCompletionCreateParams
from api.utils import (
check_api_key,
check_completion_requests,
get_event_publisher,
)
chat_router = APIRouter(prefix="/chat")
vllm_version = vllm.__version__
def get_engine():
yield LLM_ENGINE
def load_image(image_url: str):
from PIL import Image
from io import BytesIO
if image_url.startswith("data:"):
import base64
image_bytes = base64.b64decode(image_url.split(",")[1])
else:
import urllib.request
with urllib.request.urlopen(image_url) as f:
image_bytes = f.read()
return Image.open(BytesIO(image_bytes)).convert("RGB")
def process_messages(messages):
_messages = []
for message in messages:
if isinstance(message["content"], str):
_content = [message["content"]]
else:
_content = []
for c in message["content"]:
if isinstance(c, dict) and "type" in c:
if c["type"] == "text":
_content.append(c["text"])
elif c["type"] == "image_url":
if (
isinstance(c["image_url"], dict)
and "url" in c["image_url"]
):
image = load_image(image_url=c["image_url"]["url"])
else:
image = load_image(image_url=c["image_url"])
_content.insert(0, image)
_messages.append({"role": message["role"], "content": _content})
return _messages
@chat_router.post(
"/completions",
dependencies=[Depends(check_api_key)],
status_code=status.HTTP_200_OK,
)
async def create_chat_completion(
request: ChatCompletionCreateParams,
raw_request: Request,
engine: VllmEngine = Depends(get_engine),
):
if (not request.messages) or request.messages[-1]["role"] == Role.ASSISTANT.value:
raise HTTPException(status_code=400, detail="Invalid request")
request = await check_completion_requests(
request,
engine.template.stop,
engine.template.stop_token_ids,
)
request.max_tokens = request.max_tokens or 512
if request.best_of < request.n:
request.best_of = request.n
params = dictify(request, exclude={"messages"})
params.update(dict(prompt_or_messages=request.messages, echo=False))
logger.debug(f"==== request ====\n{params}")
request_id: str = f"chatcmpl-{str(uuid.uuid4())}"
# 使用minicpm-v模型
minicpmv_messages = process_messages(request.messages)
image = minicpmv_messages[0]['content'][0]
question = minicpmv_messages[0]['content'][1]
minicpmv_messages[0]['content'] = f'(<image>./</image>)\n{question}'
request.messages = minicpmv_messages
# 使用internvl模型需要解注释
# internvl_messages = process_messages(request.messages)
# image = internvl_messages[0]['content'][0]
# question = internvl_messages[0]['content'][1]
# internvl_messages[0]['content'] = f"<image>\n{question}\n"
# request.messages = internvl_messages
# stop_token_ids = [0, 92543, 92542, 0]
token_ids = engine.template.convert_messages_to_ids(
messages=request.messages,
tools=request.tools,
max_tokens=request.max_tokens,
)
result_generator = None
try:
include = {
"n",
"presence_penalty",
"frequency_penalty",
"temperature",
"top_p",
"repetition_penalty",
"min_p",
"best_of",
"ignore_eos",
"use_beam_search",
"skip_special_tokens",
"spaces_between_special_tokens",
}
kwargs = dictify(request, include=include)
# 使用minicpm-v模型
sampling_params = SamplingParams(
stop=request.stop or [],
stop_token_ids=request.stop_token_ids or [],
max_tokens=request.max_tokens,
**kwargs,
)
# 使用internvl模型需要解注释
# sampling_params = SamplingParams(
# stop=request.stop or [],
# stop_token_ids=stop_token_ids or [],
# max_tokens=request.max_tokens,
# **kwargs,
# )
# Todo: support for lora
lora_request = None
try:
from vllm.model_executor.guided_decoding import get_guided_decoding_logits_processor
if vllm_version >= "0.4.2":
decoding_config = await engine.model.get_decoding_config()
guided_decode_logits_processor = (
await get_guided_decoding_logits_processor(
request.guided_decoding_backend or decoding_config.guided_decoding_backend,
request,
engine.tokenizer,
)
)
else:
guided_decode_logits_processor = (
await get_guided_decoding_logits_processor(
request,
engine.tokenizer,
)
)
if guided_decode_logits_processor:
sampling_params.logits_processors = sampling_params.logits_processors or []
sampling_params.logits_processors.append(guided_decode_logits_processor)
except ImportError:
pass
if vllm_version >= "0.4.3":
result_generator = engine.model.generate(
{
"prompt": None,
"prompt_token_ids": token_ids,
"multi_modal_data": {
"image": image
}
},
sampling_params,
request_id,
lora_request,
)
else:
result_generator = engine.model.generate(
None,
sampling_params,
request_id,
token_ids,
lora_request,
)
except ValueError as e:
traceback.print_exc()
if request.stream:
iterator = create_chat_completion_stream(result_generator, request, request_id, engine)
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial(
get_event_publisher,
request=raw_request,
inner_send_chan=send_chan,
iterator=iterator,
),
)
else:
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if raw_request is not None and await raw_request.is_disconnected():
await engine.model.abort(request_id)
return
final_res = res
assert final_res is not None
choices = []
for output in final_res.outputs:
output.text = output.text.replace("�", "")
finish_reason = output.finish_reason
function_call = None
if request.functions or request.tools:
try:
res, function_call = engine.template.parse_assistant_response(
output.text, request.tools or request.functions,
)
output.text = res
except Exception as e:
traceback.print_exc()
logger.warning("Failed to parse tool call")
if isinstance(function_call, dict) and "arguments" in function_call:
function_call = FunctionCall(**function_call)
message = ChatCompletionMessage(
role="assistant",
content=output.text,
function_call=function_call
)
finish_reason = "function_call"
elif isinstance(function_call, dict) and "function" in function_call:
finish_reason = "tool_calls"
tool_calls = [model_validate(ChatCompletionMessageToolCall, function_call)]
message = ChatCompletionMessage(
role="assistant",
content=output.text,
tool_calls=tool_calls,
)
else:
message = ChatCompletionMessage(role="assistant", content=output.text.strip())
choices.append(
Choice(
index=output.index,
message=message,
finish_reason=finish_reason,
)
)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs)
usage = CompletionUsage(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
return ChatCompletion(
id=request_id,
choices=choices,
created=int(time.time()),
model=request.model,
object="chat.completion",
usage=usage,
)
async def create_chat_completion_stream(
generator: AsyncIterator,
request: ChatCompletionCreateParams,
request_id: str,
engine: VllmEngine,
) -> AsyncIterator:
for i in range(request.n):
# First chunk with role
choice = ChunkChoice(
index=i,
delta=ChoiceDelta(role="assistant", content=""),
finish_reason=None,
logprobs=None,
)
yield ChatCompletionChunk(
id=request_id,
choices=[choice],
created=int(time.time()),
model=request.model,
object="chat.completion.chunk",
)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
async for res in generator:
res: RequestOutput
for output in res.outputs:
i = output.index
output.text = output.text.replace("�", "")
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
delta = None
if finish_reason is None:
delta = ChoiceDelta(content=delta_text)
elif request.functions or request.tools:
call_info = None
try:
res, call_info = engine.template.parse_assistant_response(
output.text, request.tools or request.functions,
)
except Exception as e:
traceback.print_exc()
logger.warning("Failed to parse tool call")
if isinstance(call_info, dict) and "arguments" in call_info:
finish_reason = "function_call"
function_call = ChoiceDeltaFunctionCall(**call_info)
delta = ChoiceDelta(
role="assistant",
content=delta_text,
function_call=function_call
)
elif isinstance(call_info, dict) and "function" in call_info:
finish_reason = "tool_calls"
call_info["index"] = 0
tool_calls = [model_validate(ChoiceDeltaToolCall, call_info)]
delta = ChoiceDelta(
role="assistant",
content=delta_text,
tool_calls=tool_calls,
)
choice = ChunkChoice(
index=i,
delta=delta or ChoiceDelta(content=delta_text),
finish_reason=finish_reason,
logprobs=None,
)
yield ChatCompletionChunk(
id=request_id,
choices=[choice],
created=int(time.time()),
model=request.model,
object="chat.completion.chunk",
)